199 research outputs found
Probing Kaluza-Klein Dark Matter with Neutrino Telescopes
In models in which all of the Standard Model fields live in extra universal
dimensions, the lightest Kaluza-Klein (KK) particle can be stable. Calculations
of the one-loop radiative corrections to the masses of the KK modes suggest
that the identity of the lightest KK particle (LKP) is mostly the first KK
excitation of the hypercharge gauge boson. This LKP is a viable dark matter
candidate with an ideal present-day relic abundance if its mass is moderately
large, between 600 to 1200 GeV. Such weakly interacting dark matter particles
are expected to become gravitationally trapped in large bodies, such as the
Sun, and annihilate into neutrinos or other particles that decay into
neutrinos. We calculate the annihilation rate, neutrino flux and the resulting
event rate in present and future neutrino telescopes. The relatively large mass
implies that the neutrino energy spectrum is expected to be well above the
energy threshold of AMANDA and IceCube. We find that the event rate in IceCube
is between a few to tens of events per year.Comment: 13 pages, 3 figures, LaTeX; typos fixed, version to appear in PR
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations
We present the results of three-dimensional simulations of quasar
polarizations in the presence of pseudoscalar-photon mixing in the
intergalactic medium. The intergalactic magnetic field is assumed to be
uncorrelated in wave vector space but correlated in real space. Such a field
may be obtained if its origin is primordial. Furthermore we assume that the
quasars, located at cosmological distances, have negligible initial
polarization. In the presence of pseudoscalar-photon mixing we show, through a
direct comparison with observations, that this may explain the observed large
scale alignments in quasar polarizations within the framework of big bang
cosmology. We find that the simulation results give a reasonably good fit to
the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ
Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome
Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.</p
Saturated fat and human health: a protocol for a methodologically innovative systematic review and meta-analysis to inform public health nutrition guidelines
Background: The health effects of dietary fats are a controversial issue on which experts and authoritative organizations have often disagreed. Care providers, guideline developers, policy-makers, and researchers use systematic reviews to advise patients and members of the public on optimal dietary habits, and to formulate public health recommendations and policies. Existing reviews, however, have serious limitations that impede optimal dietary fat recommendations, such as a lack of focus on outcomes important to people, substantial risk of bias (RoB) issues, ignoring absolute estimates of effects together with comprehensive assessments of the certainty of the estimates for all outcomes. Objective: We therefore propose a methodologically innovative systematic review using direct and indirect evidence on diet and food-based fats (i.e., reduction or replacement of saturated fat with monounsaturated or polyunsaturated fat, or carbohydrates or protein) and the risk of important health outcomes. Methods: We will collaborate with an experienced research librarian to search MEDLINE, EMBASE, CINAHL, and the Cochrane Database of Systematic Reviews (CDSR) for randomized clinical trials (RCTs) addressing saturated fat and our health outcomes of interest. In duplicate, we will screen, extract results from primary studies, assess their RoB, conduct de novo meta-analyses and/or network meta-analysis, assess the impact of missing outcome data on meta-analyses, present absolute effect estimates, and assess the certainty of evidence for each outcome using the GRADE contextualized approach. Our work will inform recommendations on saturated fat based on international standards for reporting systematic reviews and guidelines. Conclusion: Our systematic review and meta-analysis will provide the most comprehensive and rigorous summary of the evidence addressing the relationship between saturated fat modification for people-important health outcomes. The evidence from this review will be used to inform public health nutrition guidelines. Trial registration: PROSPERO Registration: CRD42023387377
A new species of Amphimedon (Porifera, Demospongiae, Haplosclerida, Niphatidae) from the Capricorn-Bunker Group of Islands, Great Barrier Reef, Australia: target species for the sponge genome project
A new niphatid demosponge, Amphimedon queenslandica sp.nov., is described from Heron and One Tree Islands, southern Great Barrier Reef, Queensland, Australia. The new species is of particular significance as it is currently the subject of the first sponge genome project. The species is characterized within the globally distributed genus Amphimedon by its distinctive blue-green colour, and the combination of encrusting-lobate growth form, spongin-rich spiculofibres and feeble spicule size, The new species is compared and contrasted with known or suspected Amphimedon species of Australia and adjacent territories of Papua New Guinea, New Caledonia and Indonesia.</jats:p
- …
