332 research outputs found

    Rank-width of Random Graphs

    Get PDF
    Rank-width of a graph G, denoted by rw(G), is a width parameter of graphs introduced by Oum and Seymour (2006). We investigate the asymptotic behavior of rank-width of a random graph G(n,p). We show that, asymptotically almost surely, (i) if 0<p<1 is a constant, then rw(G(n,p)) = \lceil n/3 \rceil-O(1), (ii) if 1/n<< p <1/2, then rw(G(n,p))= \lceil n/3\rceil-o(n), (iii) if p = c/n and c > 1, then rw(G(n,p)) > r n for some r = r(c), and (iv) if p <= c/n and c<1, then rw(G(n,p)) <=2. As a corollary, we deduce that G(n,p) has linear tree-width whenever p=c/n for each c>1, answering a question of Gao (2006).Comment: 10 page

    Extensions of Fractional Precolorings show Discontinuous Behavior

    Get PDF
    We study the following problem: given a real number k and integer d, what is the smallest epsilon such that any fractional (k+epsilon)-precoloring of vertices at pairwise distances at least d of a fractionally k-colorable graph can be extended to a fractional (k+epsilon)-coloring of the whole graph? The exact values of epsilon were known for k=2 and k\ge3 and any d. We determine the exact values of epsilon for k \in (2,3) if d=4, and k \in [2.5,3) if d=6, and give upper bounds for k \in (2,3) if d=5,7, and k \in (2,2.5) if d=6. Surprisingly, epsilon viewed as a function of k is discontinuous for all those values of d

    Deep Expander Networks: Efficient Deep Networks from Graph Theory

    Full text link
    Efficient CNN designs like ResNets and DenseNet were proposed to improve accuracy vs efficiency trade-offs. They essentially increased the connectivity, allowing efficient information flow across layers. Inspired by these techniques, we propose to model connections between filters of a CNN using graphs which are simultaneously sparse and well connected. Sparsity results in efficiency while well connectedness can preserve the expressive power of the CNNs. We use a well-studied class of graphs from theoretical computer science that satisfies these properties known as Expander graphs. Expander graphs are used to model connections between filters in CNNs to design networks called X-Nets. We present two guarantees on the connectivity of X-Nets: Each node influences every node in a layer in logarithmic steps, and the number of paths between two sets of nodes is proportional to the product of their sizes. We also propose efficient training and inference algorithms, making it possible to train deeper and wider X-Nets effectively. Expander based models give a 4% improvement in accuracy on MobileNet over grouped convolutions, a popular technique, which has the same sparsity but worse connectivity. X-Nets give better performance trade-offs than the original ResNet and DenseNet-BC architectures. We achieve model sizes comparable to state-of-the-art pruning techniques using our simple architecture design, without any pruning. We hope that this work motivates other approaches to utilize results from graph theory to develop efficient network architectures.Comment: ECCV'1

    Graph coloring with no large monochromatic components

    Full text link
    For a graph G and an integer t we let mcc_t(G) be the smallest m such that there exists a coloring of the vertices of G by t colors with no monochromatic connected subgraph having more than m vertices. Let F be any nontrivial minor-closed family of graphs. We show that \mcc_2(G) = O(n^{2/3}) for any n-vertex graph G \in F. This bound is asymptotically optimal and it is attained for planar graphs. More generally, for every such F and every fixed t we show that mcc_t(G)=O(n^{2/(t+1)}). On the other hand we have examples of graphs G with no K_{t+3} minor and with mcc_t(G)=\Omega(n^{2/(2t-1)}). It is also interesting to consider graphs of bounded degrees. Haxell, Szabo, and Tardos proved \mcc_2(G) \leq 20000 for every graph G of maximum degree 5. We show that there are n-vertex 7-regular graphs G with \mcc_2(G)=\Omega(n), and more sharply, for every \epsilon>0 there exists c_\epsilon>0 and n-vertex graphs of maximum degree 7, average degree at most 6+\epsilon for all subgraphs, and with mcc_2(G)\ge c_\eps n. For 6-regular graphs it is known only that the maximum order of magnitude of \mcc_2 is between \sqrt n and n. We also offer a Ramsey-theoretic perspective of the quantity \mcc_t(G).Comment: 13 pages, 2 figure

    Overlap properties of geometric expanders

    Get PDF
    The {\em overlap number} of a finite (d+1)(d+1)-uniform hypergraph HH is defined as the largest constant c(H)(0,1]c(H)\in (0,1] such that no matter how we map the vertices of HH into Rd\R^d, there is a point covered by at least a c(H)c(H)-fraction of the simplices induced by the images of its hyperedges. In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, it was asked whether or not there exists a sequence {Hn}n=1\{H_n\}_{n=1}^\infty of arbitrarily large (d+1)(d+1)-uniform hypergraphs with bounded degree, for which infn1c(Hn)>0\inf_{n\ge 1} c(H_n)>0. Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d+1)(d+1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c=c(d)c=c(d). We also show that, for every dd, the best value of the constant c=c(d)c=c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d+1)(d+1)-uniform hypergraphs with nn vertices, as nn\rightarrow\infty. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any dd and any ϵ>0\epsilon>0, there exists K=K(ϵ,d)d+1K=K(\epsilon,d)\ge d+1 satisfying the following condition. For any kKk\ge K, for any point qRdq \in \mathbb{R}^d and for any finite Borel measure μ\mu on Rd\mathbb{R}^d with respect to which every hyperplane has measure 00, there is a partition Rd=A1Ak\mathbb{R}^d=A_1 \cup \ldots \cup A_{k} into kk measurable parts of equal measure such that all but at most an ϵ\epsilon-fraction of the (d+1)(d+1)-tuples Ai1,,Aid+1A_{i_1},\ldots,A_{i_{d+1}} have the property that either all simplices with one vertex in each AijA_{i_j} contain qq or none of these simplices contain qq

    Random Unitaries Give Quantum Expanders

    Full text link
    We show that randomly choosing the matrices in a completely positive map from the unitary group gives a quantum expander. We consider Hermitian and non-Hermitian cases, and we provide asymptotically tight bounds in the Hermitian case on the typical value of the second largest eigenvalue. The key idea is the use of Schwinger-Dyson equations from lattice gauge theory to efficiently compute averages over the unitary group.Comment: 14 pages, 1 figur
    corecore