332 research outputs found
Rank-width of Random Graphs
Rank-width of a graph G, denoted by rw(G), is a width parameter of graphs
introduced by Oum and Seymour (2006).
We investigate the asymptotic behavior of rank-width of a random graph
G(n,p). We show that, asymptotically almost surely, (i) if 0<p<1 is a constant,
then rw(G(n,p)) = \lceil n/3 \rceil-O(1), (ii) if 1/n<< p <1/2, then
rw(G(n,p))= \lceil n/3\rceil-o(n), (iii) if p = c/n and c > 1, then rw(G(n,p))
> r n for some r = r(c), and (iv) if p <= c/n and c<1, then rw(G(n,p)) <=2.
As a corollary, we deduce that G(n,p) has linear tree-width whenever p=c/n
for each c>1, answering a question of Gao (2006).Comment: 10 page
Extensions of Fractional Precolorings show Discontinuous Behavior
We study the following problem: given a real number k and integer d, what is
the smallest epsilon such that any fractional (k+epsilon)-precoloring of
vertices at pairwise distances at least d of a fractionally k-colorable graph
can be extended to a fractional (k+epsilon)-coloring of the whole graph? The
exact values of epsilon were known for k=2 and k\ge3 and any d. We determine
the exact values of epsilon for k \in (2,3) if d=4, and k \in [2.5,3) if d=6,
and give upper bounds for k \in (2,3) if d=5,7, and k \in (2,2.5) if d=6.
Surprisingly, epsilon viewed as a function of k is discontinuous for all those
values of d
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Efficient CNN designs like ResNets and DenseNet were proposed to improve
accuracy vs efficiency trade-offs. They essentially increased the connectivity,
allowing efficient information flow across layers. Inspired by these
techniques, we propose to model connections between filters of a CNN using
graphs which are simultaneously sparse and well connected. Sparsity results in
efficiency while well connectedness can preserve the expressive power of the
CNNs. We use a well-studied class of graphs from theoretical computer science
that satisfies these properties known as Expander graphs. Expander graphs are
used to model connections between filters in CNNs to design networks called
X-Nets. We present two guarantees on the connectivity of X-Nets: Each node
influences every node in a layer in logarithmic steps, and the number of paths
between two sets of nodes is proportional to the product of their sizes. We
also propose efficient training and inference algorithms, making it possible to
train deeper and wider X-Nets effectively.
Expander based models give a 4% improvement in accuracy on MobileNet over
grouped convolutions, a popular technique, which has the same sparsity but
worse connectivity. X-Nets give better performance trade-offs than the original
ResNet and DenseNet-BC architectures. We achieve model sizes comparable to
state-of-the-art pruning techniques using our simple architecture design,
without any pruning. We hope that this work motivates other approaches to
utilize results from graph theory to develop efficient network architectures.Comment: ECCV'1
Graph coloring with no large monochromatic components
For a graph G and an integer t we let mcc_t(G) be the smallest m such that
there exists a coloring of the vertices of G by t colors with no monochromatic
connected subgraph having more than m vertices. Let F be any nontrivial
minor-closed family of graphs. We show that \mcc_2(G) = O(n^{2/3}) for any
n-vertex graph G \in F. This bound is asymptotically optimal and it is attained
for planar graphs. More generally, for every such F and every fixed t we show
that mcc_t(G)=O(n^{2/(t+1)}). On the other hand we have examples of graphs G
with no K_{t+3} minor and with mcc_t(G)=\Omega(n^{2/(2t-1)}).
It is also interesting to consider graphs of bounded degrees. Haxell, Szabo,
and Tardos proved \mcc_2(G) \leq 20000 for every graph G of maximum degree 5.
We show that there are n-vertex 7-regular graphs G with \mcc_2(G)=\Omega(n),
and more sharply, for every \epsilon>0 there exists c_\epsilon>0 and n-vertex
graphs of maximum degree 7, average degree at most 6+\epsilon for all
subgraphs, and with mcc_2(G)\ge c_\eps n. For 6-regular graphs it is known only
that the maximum order of magnitude of \mcc_2 is between \sqrt n and n.
We also offer a Ramsey-theoretic perspective of the quantity \mcc_t(G).Comment: 13 pages, 2 figure
Overlap properties of geometric expanders
The {\em overlap number} of a finite -uniform hypergraph is
defined as the largest constant such that no matter how we map
the vertices of into , there is a point covered by at least a
-fraction of the simplices induced by the images of its hyperedges.
In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph
expansion for higher dimensional simplicial complexes, it was asked whether or
not there exists a sequence of arbitrarily large
-uniform hypergraphs with bounded degree, for which . Using both random methods and explicit constructions, we answer this
question positively by constructing infinite families of -uniform
hypergraphs with bounded degree such that their overlap numbers are bounded
from below by a positive constant . We also show that, for every ,
the best value of the constant that can be achieved by such a
construction is asymptotically equal to the limit of the overlap numbers of the
complete -uniform hypergraphs with vertices, as
. For the proof of the latter statement, we establish the
following geometric partitioning result of independent interest. For any
and any , there exists satisfying the
following condition. For any , for any point and
for any finite Borel measure on with respect to which
every hyperplane has measure , there is a partition into measurable parts of equal measure such that all but
at most an -fraction of the -tuples
have the property that either all simplices with
one vertex in each contain or none of these simplices contain
Random Unitaries Give Quantum Expanders
We show that randomly choosing the matrices in a completely positive map from
the unitary group gives a quantum expander. We consider Hermitian and
non-Hermitian cases, and we provide asymptotically tight bounds in the
Hermitian case on the typical value of the second largest eigenvalue. The key
idea is the use of Schwinger-Dyson equations from lattice gauge theory to
efficiently compute averages over the unitary group.Comment: 14 pages, 1 figur
- …
