242 research outputs found
Agricultural Costs of Carbon Dioxide Abatement via Land-use Adaptation on organic soils
Increasing carbon dioxide emissions and related climate effects require mitigation strategies, thereby also emissions caused by agriculture are brought into the focus of political debate. In particular organic soil cultivation, inducing significant CO2 emissions is being discussed more and more. This study aims to answer the question of whether changes of organic soil management can serve as cost-efficient mitigation strategies for climate change. To this end we have built an economic model in which farm-individual and plot-specific CO2-abatement costs of selected landuse strategies are calculated by contrasting effects on the agricultural income with the related reduction in greenhouse-gas emissions. With respect to microeconomic data we use a dataset collected in six German regions while data on emission-factors originates from co-operations with natural-scientific research groups. Results show that CO2-abatement costs vary due to different levels of land-use reorganisation. Reasonable emission reductions are mainly achieved when agricultural intensity is clearly decreased. Agricultural income forgone varies significantly due to production conditions and mitigation strategies. However, even when economic costs are high they may be balanced by high emission reductions and may not result in high abatement costs. Nevertheless, CO2-reductions benefits appear to be social and costs private. Agro-environmental programmes must be implemented to compensate resulting income losses.CO2 abatement cost, climate change mitigation strategies, microeconomic consequences, organic soil management, Land Economics/Use, Resource /Energy Economics and Policy,
Evaluation of wood pretreatments on oak and cedar
In a separate study, we conducted a series of high-precision radiocarbon measurements using wood from Britain and New Zealand to investigate interhemispheric offsets and possible temporal variations. To minimize variability associated with different species, the pretreatment of the oak (Quercus patraea) and cedar (Librocedrus bidwilli) was to acellulose for both. This study investigates the thoroughness of a range of pretreatment processes by the stable isotope analysis of the products
Variations of radiocarbon in tree rings: southern hemisphere offset preliminary results
The Queen's University of Belfast, Northern Ireland and University of Waikato, Hamilton, New Zealand radiocarbon laboratories have undertaken a series of high-precision measurements on decadal samples of dendrochronologically dated oak (Quercus patrea) and cedar (Libocedrus bidwillii) from Great Britain and New Zealand, respectively. The results show a real atmospheric offset of 3.4 ± 0.6% (27.2 ± 4.7 ¹⁴C yr) between the two locations for the interval AD 1725 to AD 1885, with the Southern Hemisphere being depleted in ¹⁴C. This result is less than the value currently used to correct Southern Hemisphere calibrations, possibly indicating a gradient in Δ¹⁴C within the Southern Hemisphere
An empirical method to estimate the effect of soil on the rate for transmission of damping‐off disease
The ability of some soils to suppress soil-borne diseases has been long recognised, but the underlying epidemiological mechanisms by which this occurs are largely unknown.• Using damping-off disease caused by Rhizoctonia solani, spreading through replicated populations of radish (Raphanus sativus) seedlings growing in soil or sand, we introduce and test a method to show how the suppressive effects of soil affect the rates of primary and secondary infection, which control amplification and spread of disease. The method involves spatial mapping of disease over time combined with an epidemiological analysis to distinguish primary from secondary infection in a dynamically changing population of susceptible hosts available for infection.• Analysis of the secondary transmission rates revealed three main trends: the transmission rate was lower for soil compared with sand; the transmission rate varied systematically with time, first increasing and then decreasing; and the transmission rate varied amongst replicate epidemics.• The consequences of these findings for damping-off epidemics and the potential of this type of analysis to contribute to an epidemiological understanding of the effect of soil on the suppression of epidemics are discussed
High-salinity growth conditions promote tat-independent secretion of tat substrates in Bacillus subtilis
The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway
On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis
α-Cellulose was isolated from four samples of Scots pine (Pinus sylvestris L.). Each sample was divided into two portions. One portion had the resins removed by solvent extraction prior to removal of lignins by treatment with acidic sodium chlorite solution and treatment with sodium hydroxide solution to remove hemicelluloses. The other portion was processed in the same way apart from the solvent extraction step. The isolated wood constituents were characterised by attenuated total reflectance Fourier transform infrared (ATR/FT-IR) spectroscopy. The infrared spectra of the resulting α-cellulose samples were identical indicating that treatment with acidic sodium chlorite and sodium hydroxide was sufficient to remove resins. The values of the stable isotope ratios (carbon, oxygen and hydrogen) for each pair of α-cellulose sub-samples also showed no significant differences within the reproducibility of the methods. The implication of these studies demonstrate that the customary step of resin extraction from pine is unnecessary if sodium chlorite and sodium hydroxide are used for the isolation of α-cellulose following the technique described in this paper. In addition, the study demonstrates that the oxygen isotope ratio of the water used for cellulose extraction does not influence the stable isotope values in the α-cellulose obtained. The importance of isotopic homogeneity within the cellulose sample is also highlighted
New Ministerial of Lay in Catholic Church. A Case Study in Congregation of Our Lady of Charity of The Good Shepherd Regarding Lay Mission Partner
Morinda Citrifolia L. (noni) Improves the Quality of Life in Adults with Osteoarthritis
Background: Morinda citrifolia Linn (noni), as a “pain killer”, has been used as a traditional medicine by Polynesians for over 2000 years. It was reported to have a broad range of therapeutic effects including analgesic and anti-inflammation. The in-vitro and in vivoanti-inflammatory and analgesic properties of noni juice (NJ) suggest that NJ may be a useful adjunctive treatment for osteoarthritis (OA). In this pilot study we explored whether NJ improves the symptoms and Quality of Life (QoL) for adults with OA. We also sought to evaluate the tolerability and safety of NJ for patients with OA in a primary care setting.
Methods: This was an open label three-month intervention pilot study. Data were collected by pre/post intervention survey and laboratory testing. Inclusion criteria were: adults of both sexes aged 40 to 75, with a diagnosis of OA on the hip or knee by x-ray examination provided by their primary care physician, not on prescription medicine for OA, and who were willing to drink 3 oz of NJ a day for 90 days.
Results: Of the 64 questions measuring different aspects of QoL asked on the pre/post survey, 49 (77%) had significant pre/post mean scale differences as measured by independent t-test. The OA patients reported being significantly more satisfied with their current health conditions including mobility, walking and bending, hand, finger, and arm functions, household tasks, social activity, arthritis pain, work ability, level of tension, and mood. The study participants were also more positive about their future health and reported taking less over-the-counter (OTC) pain relievers. Pre/post laboratory testing including: lipid panel, liver and kidney functions were in the normal ranges. High Sensitive C Reactive Protein (hsCRP), an inflammatory biomarker, was reduced by 10% after the intervention
A genome-wide CRISPR/Cas9 screen reveals the requirement of host sphingomyelin synthase 1 for infection with Pseudorabies virus mutant gD–Pass
Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD–Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD–Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD–Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD–Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked
- …
