5,919 research outputs found
Development of a heterogeneous laminating resin system
The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions
Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum
information science due to its optical addressability and room-temperature spin
coherence. However, measurements of the NV center's spin state typically
require averaging over many cycles to overcome noise. Here, we review several
approaches to improve the readout performance and highlight future avenues of
research that could enable single-shot electron-spin readout at room
temperature.Comment: 21 pages, 7 figure
Two Boats, Three Summers, Five Universities, One Dozen Instructors, and Sixty-Five Teachers: A Collaborative Oceanography Field Program for Earth Science
A three-day field workshop was an integral component of the graduate-level course entitled, Oceanography, that was offered by Virginia Earth Science Collaborative Project (VESC) to help Virginia educators earn the earth science teaching endorsement. The VESC partner institutions that offered Oceanographngeorge Mason University, James Madison University, the University of Virginia Southwest Center, and Virginia Commonwealth University-lacked direct access to research and education facilities en the coast. The College of William & Mary, another VESC partner, provided this resource through the Virginia Institute of Marine Science’s (VIMS) Eastern Shore Laboratory in Wachapreague, Virginia. The field program agenda and activities were developed and conducted by a team comprised of VESC oceanography faculty, Virginia Sea Grant educators, and a scientist from VIMS. This collaboration resulted in a program design used as the basis for six workshops conducted over three summers. Seventy-nine Virginia middle school and high school science teachers took part in the six workshops, conducted in July of 2005, 2006, and 2007. This article describes the workshop activities and provides perspectives on its design and implementation from the viewpoints of Virginia Sea Grant educators who served as field instructors
CO2 lasers in the management of potentially malignant and malignant oral disorders
The CO2 laser was invented in 1963 by Kumar Patel. Since the early 1970s, CO2 laser has proved to be an effective method of treatment for patients with several types of oral lesions, including early squamous cell carcinoma.
Laser surgery of oral premalignant disorders is an effective tool in a complete management strategy which includes careful clinical follow-up, patient education to eliminate risk factors, reporting and biopsying of suspicious lesions and any other significant lesions. However, in a number of patients, recurrence and progression to malignancy remains a risk. CO2 laser resection has become the preferred treatment for small oral and oropharyngeal carcinomas. Laser resection does not require reconstructive surgery. There is minimal scarring and thus, optimum functional results can be expected.
New and improved applications of laser surgery in the treatment of oral and maxillofacial/head and neck disorders are being explored. As more surgeons become experienced in the use of lasers and as our knowledge of the capabilities and advantages of this tool expands, lasers may play a significant role in the management of different pathologies
Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds using All-Optical Charge Readout
Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile
platform for sensing applications spanning from nanomagnetism to in-vivo
monitoring of cellular processes. In many cases, however, weak optical signals
and poor contrast demand long acquisition times that prevent the measurement of
environmental dynamics. Here, we demonstrate the ability to perform fast,
high-contrast optical measurements of charge distributions in ensembles of NV
centers in nanodiamonds and use the technique to improve the spin readout
signal-to-noise ratio through spin-to-charge conversion. A study of 38
nanodiamonds, each hosting 10-15 NV centers with an average diameter of 40 nm,
uncovers complex, multiple-timescale dynamics due to radiative and
non-radiative ionization and recombination processes. Nonetheless, the
nanodiamonds universally exhibit charge-dependent photoluminescence contrasts
and the potential for enhanced spin readout using spin-to-charge conversion. We
use the technique to speed up a relaxometry measurement by a factor of
five.Comment: 13 pages, 14 figure
Fabrication of (111)-Faced Single-Crystal Diamond Plates by Laser Nucleated Cleaving
Single-crystal diamond plates with surfaces oriented in a (111) crystal plane
are required for high-performance solid-state device platforms ranging from
power electronics to quantum information processing architectures. However,
producing plates with this orientation has proven challenging. In this paper,
we demonstrate a method for reliably and precisely fabricating (111)-faced
plates from commercially available, chemical-vapor-deposition-grown, type-IIa
single-crystal diamond substrates with (100) faces. Our method uses a
nanosecond-pulsed visible laser to nucleate and propagate a mechanical cleave
in a chosen (111) crystal plane, resulting in faces as large as 3.0
mm0.3 mm with atomically flat surfaces, negligible miscut angles, and
near zero kerf loss. We discuss the underlying physical mechanisms of the
process along with potential improvements that will enable the production of
millimeter-scale (111)-faced single-crystal diamond plates for a variety of
emerging devices and applications.Comment: 11 pages, 10 figures, 2 table
Structural validation of oral mucosal tissue using optical coherence tomography
Background:
Optical coherence tomography (OCT) is a non-invasive optical technology using near-infrared light to produce cross-sectional tissue images with lateral resolution.
Objectives:
The overall aims of this study was to generate a bank of normative and pathological OCT data of the oral tissues to allow identification of cellular structures of normal and pathological processes with the aim to create a diagnostic algorithm which can be used in the early detection of oral disorders.
Material and methods:
Seventy-three patients with 78 suspicious oral lesions were referred for further management to the UCLH Head and Neck Centre, London. The entire cohort had their lesions surgically biopsied (incisional or excisional). The immediate ex vivo phase involved scanning the specimens using optical coherence tomography. The specimens were then processed by a histopathologist.
Five tissue structures were evaluated as part of this study, including: keratin cell layer, epithelial layer, basement membrane, lamina propria and other microanatomical structures. Two independent assessors (clinician and pathologist trained to use OCT) assessed the OCT images and were asked to comment on the cellular structures and changes involving the five tissue structures in non-blind fashion.
Results:
Correct identification of the keratin cell layer and its structural changes was achieved in 87% of the cohort; for the epithelial layer it reached 93.5%, and 94% for the basement membrane. Microanatomical structures identification was 64% for blood vessels, 58% for salivary gland ducts and 89% for rete pegs. The agreement was “good” between the clinician and the pathologist.
OCT was able to differential normal from pathological tissue and pathological tissue of different entities in this immediate ex vivo study. Unfortunately, OCT provided inadequate cellular and subcellular information to enable the grading of oral premalignant disorders.
Conclusion:
This study enabled the creation of OCT bank of normal and pathological oral tissues. The pathological changes identified using OCT enabled differentiation between normal and pathological tissues, and identification of different tissue pathologies.
Further studies are required to assess the accuracy of OCT in identification of various pathological processes involving the oral tissues
- …
