591 research outputs found
Inverse Spin Hall Effect by Spin Injection
Motivated by a recent experiment[Nature {\bf 442}, 176 (2006)], we present a
quantitative microscopic theory to investigate the inverse spin-Hall effect
with spin injection into aluminum considering both intrinsic and extrinsic
spin-orbit couplings using the orthogonalized-plane-wave method. Our
theoretical results are in good agreement with the experimental data. It is
also clear that the magnitude of the anomalous Hall resistivity is mainly due
to contributions from extrinsic skew scattering, while its spatial variation is
determined by the intrinsic spin-orbit coupling.Comment: 5 pages, 3 figure
Coulomb drag in double quantum wells with a perpendicular magnetic field
Momentum transfer due to electron-electron interaction (Coulomb drag) between
two quantum wells, separated by a distance , in the presence of a
perpendicular magnetic field, is studied at low temperatures. We find besides
the well known Shubnikov-de Haas oscillations, which also appear in the drag
effect, the momentum transfer is markedly enhanced by the magnetic field.Comment: 8 pages, Revtex, 4 Postscript figures are available upon request,
Accepted by Mod. Phys. Lett.
Qubit measurement using a quantum point contact with a quantum Langevin equation approach
We employ a quantum Langevin equation approach to establish non-Markovian
dynamical equations, on a fully microscopic basis, to investigate the
measurement of the state of a coupled quantum dot qubit by a nearby quantum
point contact. The ensuing Bloch equations allow us to examine qubit relaxation
and decoherence induced by measurement, and also the noise spectrum of meter
output current with the help of a quantum regression theorem, at arbitrary
bias-voltage and temperature. Our analyses provide a clear resolution of a
recent debate concerning the occurrence of a quantum oscillation peak in the
noise spectrum.Comment: 5 pages, 3 figures, submitted, published version in Phys. Rev.
Electromagnetic Wave Transmission Through a Subwavelength Nano-hole in a Two-dimensional Plasmonic Layer
An integral equation is formulated to describe electromagnetic wave
transmission through a sub-wavelength nano-hole in a thin plasmonic sheet in
terms of the dyadic Green's function for the associated Helmholtz problem.
Taking the subwavelength radius of the nano-hole to be the smallest length of
the system, we have obtained an exact solution of the integral equation for the
dyadic Green's function analytically and in closed form. This dyadic Green's
function is then employed in the numerical analysis of electromagnetic wave
transmission through the nano-hole for normal incidence of the incoming wave
train. The electromagnetic transmission involves two distinct contributions,
one emanating from the nano-hole and the other is directly transmitted through
the thin plasmonic layer itself (which would not occur in the case of a perfect
metal screen). The transmitted radiation exhibits interference fringes in the
vicinity of the nano-hole, and they tend to flatten as a function of increasing
lateral separation from the hole, reaching the uniform value of transmission
through the sheet alone at large separations.Comment: 14 pages, 24 individual figures organized in 9 captioned group
- …
