6,539 research outputs found
Simulations of the Population of Centaurs II: Individual Objects
Detailed orbit integrations of clones of five Centaurs -- namely, 1996 AR20,
2060 Chiron, 1995 SN55, 2000 FZ53 and 2002 FY36 -- for durations of 3 Myr are
presented. One of our Centaur sample starts with perihelion initially under the
control of Jupiter (1996 AR20), two start under the control of Saturn (Chiron
and 1995 SN55) and one each starts under the control of Uranus (2000 FZ53) and
Neptune (2002 FY36) respectively. A variety of interesting pathways are
illustrated with detailed examples including: capture into the Jovian Trojans,
repeated bursts of short-period comet behaviour, capture into mean-motion
resonances with the giant planets and into Kozai resonances, as well as
traversals of the entire Solar system. For each of the Centaurs, we provide
statistics on the numbers (i) ejected, (ii) showing short-period comet
behaviour and (iii) becoming Earth and Mars crossing. For example, Chiron has
over 60 % of its clones becoming short-period objects, whilst 1995 SN55 has
over 35 %. Clones of these two Centaurs typically make numerous close
approaches to Jupiter. At the other extreme, 2000 FZ53 has roughly 2 % of its
clones becoming short-period objects. In our simulations, typically 20 % of the
clones which become short-period comets subsequently evolve into
Earth-crossers.Comment: 10 pages, in press at MNRA
The Populations of Comet-Like Bodies in the Solar system
A new classification scheme is introduced for comet-like bodies in the Solar
system. It covers the traditional comets as well as the Centaurs and
Edgeworth-Kuiper belt objects. At low inclinations, close encounters with
planets often result in near-constant perihelion or aphelion distances, or in
perihelion-aphelion interchanges, so the minor bodies can be labelled according
to the planets predominantly controlling them at perihelion and aphelion. For
example, a JN object has a perihelion under the control of Jupiter and aphelion
under the control of Neptune, and so on. This provides 20 dynamically distinct
categories of outer Solar system objects in the Jovian and trans-Jovian
regions. The Tisserand parameter with respect to the planet controlling
perihelion is also often roughly constant under orbital evolution. So, each
category can be further sub-divided according to the Tisserand parameter. The
dynamical evolution of comets, however, is dominated not by the planets nearest
at perihelion or aphelion, but by the more massive Jupiter. The comets are
separated into four categories -- Encke-type, short-period, intermediate and
long-period -- according to aphelion distance. The Tisserand parameter
categories now roughly correspond to the well-known Jupiter-family comets,
transition-types and Halley-types. In this way, the nomenclature for the
Centaurs and Edgeworth-Kuiper belt objects is based on, and consistent with,
that for comets.Comment: MNRAS, in press, 11 pages, 6 figures (1 available as postscript, 5 as
gif). Higher resolution figures available at
http://www-thphys.physics.ox.ac.uk/users/WynEvans/preprints.pd
Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey
We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide
Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0
keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster
currently known. The mere existence of this system represents a huge problem
for Omega_0=1 world models.
At the modest (off-axis) resolution of the ROSAT PSPC observation in which
the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI
observation confirms this impression and rules out significant contamination
from point sources. However, in moderately deep optical images (R and I band)
the cluster exhibits signs of substructure in its apparent galaxy distribution.
A first crude estimate of the velocity dispersion of the cluster galaxies based
on six redshifts yields a high value of 1650 km/s, indicative of a very massive
cluster and/or the presence of substructure along the line of sight. While a
more accurate assessment of the dynamical state of this system requires much
better data at both optical and X-ray wavelengths, the high mass of the cluster
has already been unambiguously confirmed by a very strong detection of the
Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001).
Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant
X-ray luminous cluster currently known and also a WARPS discovery, we obtain a
first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and
L_X>5e44 erg/s. Using the best currently available data, we find the comoving
space density of very distant, massive clusters to be in excellent agreement
with the value measured locally (z<0.3), and conclude that negative evolution
is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses
emulateapj.st
Absorbing systematic effects to obtain a better background model in a search for new physics
This paper presents a novel approach to estimate the Standard Model
backgrounds based on modifying Monte Carlo predictions within their systematic
uncertainties. The improved background model is obtained by altering the
original predictions with successively more complex correction functions in
signal-free control selections. Statistical tests indicate when sufficient
compatibility with data is reached. In this way, systematic effects are
absorbed into the new background model. The same correction is then applied on
the Monte Carlo prediction in the signal region. Comparing this method to other
background estimation techniques shows improvements with respect to statistical
and systematical uncertainties. The proposed method can also be applied in
other fields beyond high energy physics
The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters
We present a measurement of the cluster X-ray luminosity-temperature relation
out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters
detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit
in redshift and luminosity bins. The resulting temperature and luminosity
measurements of these bins, which occupy a region of the high redshift L-T
relation not previously sampled, are compared to existing measurements at low
redshift in order to constrain the evolution of the L-T relation. We find a
best fit to low redshift (z1 keV, to be L proportional
to T^(3.15\pm0.06). Our data are consistent with no evolution in the
normalisation of the L-T relation up to z~0.8. Combining our results with ASCA
measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1,
with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or
eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms
of the entropy-driven evolution of clusters. Further implications for
cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Simulations of the Population of Centaurs I: The Bulk Statistics
Large-scale simulations of the Centaur population are carried out. The
evolution of 23328 particles based on the orbits of 32 well-known Centaurs is
followed for up to 3 Myr in the forward and backward direction under the
influence of the 4 massive planets. The objects exhibit a rich variety of
dynamical behaviour with half-lives ranging from 540 kyr (1996 AR20) to 32 Myr
(2000 FZ53). The mean half-life of the entire sample of Centaurs is 2.7 Myr.
The data are analyzed using a classification scheme based on the controlling
planets at perihelion and aphelion, previously given in Horner et al (2003).
Transfer probabilities are computed and show the main dynamical pathways of the
Centaur population. The total number of Centaurs with diameters larger than 1
km is estimated as roughly 44300, assuming an inward flux of one new
short-period comet every 200 yrs. The flux into the Centaur region from the
Edgeworth-Kuiper belt is estimated to be 1 new object every 125 yrs. Finally,
the flux from the Centaur region to Earth-crossing orbits is 1 new
Earth-crosser every 880 yrsComment: 15 pages, 2 figures, MNRAS in pres
Simulations of the population of Centaurs - I. The bulk statistics
Large-scale simulations of the Centaur population are carried out. The evolution of 23328 particles based on the orbits of 32 well-known Centaurs is followed for up to 3 Myr in the forward and backward direction under the influence of the four massive planets. The objects exhibit a rich variety of dynamical behaviour with half-lives ranging from 540 kyr (1996AR20) to 32 Myr (2000FZ53). The mean half-life of the entire sample of Centaurs is 2.7 Myr. The data are analysed using a classification scheme based on the controlling planets at perihelion and aphelion, previously given in Horner et al. Transfer probabilities are computed and show the main dynamical pathways of the Centaur population. The total number of Centaurs with diameters larger than 1 km is estimated as ∼44300, assuming an inward flux of one new short-period comet every 200 yr. The flux into the Centaur region from the Edgeworth-Kuiper Belt is estimated to be one new object every 125 yr. Finally, the flux from the Centaur region to Earth-crossing orbits is one new Earth-crosser every 880 y
The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function
We present measurements of the galaxy cluster X-ray Luminosity Function (XLF)
from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution.
WARPS is a serendipitous survey of the central region of ROSAT pointed
observations and was carried out in two phases (WARPS-I and WARPS-II). The
results here are based on a final sample of 124 clusters, complete above a flux
limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky
coverage of 70.9 deg2. We find significant evidence for negative evolution of
the XLF, which complements the majority of X-ray cluster surveys. To quantify
the suggested evolution, we perform a maximum likelihood analysis and conclude
that the evolution is driven by a decreasing number density of high luminosity
clusters with redshift, while the bulk of the cluster population remains nearly
unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The
results are found to be insensitive to a variety of sources of systematic
uncertainty that affect the measurement of the XLF and determination of the
survey selection function. We perform a Bayesian analysis of the XLF to fully
account for uncertainties in the local XLF on the measured evolution, and find
that the detected evolution remains significant at the 95% level. We observe a
significant excess of clusters in the WARPS at 0.1 < z < 0.3 and LX ~ 2 10E42
erg/s compared with the reference low-redshift XLF, or our Bayesian fit to the
WARPS data. We find that the excess cannot be explained by sample variance, or
Eddington bias, and is unlikely to be due to problems with the survey selection
function.Comment: 13 pages, 12 figures, accepted for publication in MNRA
- …
