12 research outputs found
Classical information deficit and monotonicity on local operations
We investigate classical information deficit: a candidate for measure of
classical correlations emerging from thermodynamical approach initiated in
[Phys. Rev. Lett 89, 180402]. It is defined as a difference between amount of
information that can be concentrated by use of LOCC and the information
contained in subsystems. We show nonintuitive fact, that one way version of
this quantity can increase under local operation, hence it does not possess
property required for a good measure of classical correlations. Recently it was
shown by Igor Devetak, that regularised version of this quantity is monotonic
under LO. In this context, our result implies that regularization plays a role
of "monotoniser".Comment: 6 pages, revte
Detecting entanglement of random states with an entanglement witness
The entanglement content of high-dimensional random pure states is almost
maximal, nevertheless, we show that, due to the complexity of such states, the
detection of their entanglement using witness operators is rather difficult. We
discuss the case of unknown random states, and the case of known random states
for which we can optimize the entanglement witness. Moreover, we show that
coarse graining, modeled by considering mixtures of m random states instead of
pure ones, leads to a decay in the entanglement detection probability
exponential with m. Our results also allow to explain the emergence of
classicality in coarse grained quantum chaotic dynamics.Comment: 14 pages, 4 figures; minor typos correcte
Local information as a resource in distributed quantum systems
We develop a paradigm for distributed quantum systems, where not only quantum communication, but also information is a valuable resource. We construct a scheme for manipulating information in analogy to entanglement theory. In this scheme, instead of maximally entangled states, Alice and Bob distill product states. We then show that the main tools of entanglement theory are general enough to work also in this opposite scheme. We obtain, up to a plausible assumption, that the amount of information that must be lost during a concentration protocol can be expressed as the relative entropy distance from some set of states
Novel cloning machine with supplementary information
Probabilistic cloning was first proposed by Duan and Guo. Then Pati
established a novel cloning machine (NCM) for copying superposition of multiple
clones simultaneously. In this paper, we deal with the novel cloning machine
with supplementary information (NCMSI). For the case of cloning two states, we
demonstrate that the optimal efficiency of the NCMSI in which the original
party and the supplementary party can perform quantum communication equals that
achieved by a two-step cloning protocol wherein classical communication is only
allowed between the original and the supplementary parties. From this
equivalence it follows that NCMSI may increase the success probabilities for
copying. Also, an upper bound on the unambiguous discrimination of two
nonorthogonal pure product states is derived. Our investigation generalizes and
completes the results in the literature.Comment: 22 pages; the presentation is revised, and some typos are correcte
Quantum Discord in a spin-1/2 transverse XY Chain Following a Quench
We report a study on the zero-temperature quantum discord as a measure of
two-spin correlation of a transverse XY spin chain following a quench across a
quantum critical point and investigate the behavior of mutual information,
classical correlations and hence of discord in the final state as a function of
the rate of quenching. We show that though discord vanishes in the limit of
very slow as well as very fast quenching, it exhibits a peak for an
intermediate value of the quenching rate. We show that though discord and also
the mutual information exhibit a similar behavior with respect to the quenching
rate to that of concurrence or negativity following an identical quenching,
there are quantitative differences. Our studies indicate that like concurrence,
discord also exhibits a power law scaling with the rate of quenching in the
limit of slow quenching though it may not be expressible in a closed power law
form. We also explore the behavior of discord on quenching linearly across a
quantum multicritical point (MCP) and observe a scaling similar to that of the
defect density.Comment: 6 pages, 5 figure
Many body physics from a quantum information perspective
The quantum information approach to many body physics has been very
successful in giving new insight and novel numerical methods. In these lecture
notes we take a vertical view of the subject, starting from general concepts
and at each step delving into applications or consequences of a particular
topic. We first review some general quantum information concepts like
entanglement and entanglement measures, which leads us to entanglement area
laws. We then continue with one of the most famous examples of area-law abiding
states: matrix product states, and tensor product states in general. Of these,
we choose one example (classical superposition states) to introduce recent
developments on a novel quantum many body approach: quantum kinetic Ising
models. We conclude with a brief outlook of the field.Comment: Lectures from the Les Houches School on "Modern theories of
correlated electron systems". Improved version new references adde
Scalable multi-particle entanglement of trapped ions
Among the various kinds of entangled states, the 'W state' plays an important
role as its entanglement is maximally persistent and robust even under particle
loss. Such states are central as a resource in quantum information processing
and multiparty quantum communication. Here we report the scalable and
deterministic generation of four-, five-, six-, seven- and eight-particle
entangled states of the W type with trapped ions. We obtain the maximum
possible information on these states by performing full characterization via
state tomography, using individual control and detection of the ions. A
detailed analysis proves that the entanglement is genuine. The availability of
such multiparticle entangled states, together with full information in the form
of their density matrices, creates a test-bed for theoretical studies of
multiparticle entanglement. Independently, -Greenberger-Horne-Zeilinger-
entangled states with up to six ions have been created and analysed in Boulder
