233 research outputs found

    N-RAP expression during mouse heart development

    Get PDF
    N-RAP gene expression and N-RAP localization were studied during mouse heart development using semiquantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. N-RAP mRNA was detected at embryonic day (E) 10.5, significantly increased from E10.5 to E16.5, and remained essentially constant from E16.5 until 21 days after birth. In E9.5-10.5 heart tissue, N-RAP protein was primarily associated with developing premyofibril structures containing alpha-actinin, as well as with the Z-lines and M-lines of more-mature myofibrils. In contrast, N-cadherin was concentrated in patches at the periphery of the cardiomyocytes. N-RAP labeling markedly increased between E10.5 and E16.5; almost all of the up-regulated N-RAP was associated with intercalated disk structures, and the proportion of mature sarcomeres containing N-RAP decreased. In adult hearts, specific N-RAP staining was only observed at the intercalated disks and was not found in the sarcomeres. The results are consistent with N-RAP functioning as a catalytic scaffolding molecule, with low levels of the scaffold being sufficient to repetitively catalyze key steps in myofibril assembly

    EL PODER COMO MEDIDA DEL POLITICO.

    Get PDF
    Resumen en español.Resumen en inglés

    History-Dependent Mechanical Properties of Permeabilized Rat Soleus Muscle Fibers

    Get PDF
    AbstractPermeabilized rat soleus muscle fibers were subjected to repeated triangular length changes (paired ramp stretches/releases, 0.03 l0,±0.1 l0 s−1 imposed under sarcomere length control) to investigate whether the rate of stiffness recovery after movement increased with the level of Ca2+ activation. Actively contracting fibers exhibited a characteristic tension response to stretch: tension rose sharply during the initial phase of the movement before dropping slightly to a plateau, which was maintained during the remainder of the stretch. When the fibers were stretched twice, the initial phase of the response was reduced by an amount that depended on both the level of Ca2+ activation and the elapsed time since the first movement. Detailed analysis revealed three new and important findings. 1) The rates of stiffness and tension recovery and 2) the relative height of the tension plateau each increased with the level of Ca2+ activation. 3) The tension plateau developed more quickly during the second stretch at high free Ca2+ concentrations than at low. These findings are consistent with a cross-bridge mechanism but suggest that the rate of the force-generating power-stroke increases with the intracellular Ca2+ concentration and cross-bridge strain

    The Viscoelastic Properties of Passive Eye Muscle in Primates. I: Static Forces and Step Responses

    Get PDF
    The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability of eye plant models to assist in formulating a patient's diagnosis and prognosis. To investigate these properties we conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however considerably more complex than previously thought, indicating the presence of several relaxation processes, with time constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will have to be updated to incorporate these properties

    A Mathematical Model of Muscle Containing Heterogeneous Half-Sarcomeres Exhibits Residual Force Enhancement

    Get PDF
    A skeletal muscle fiber that is stimulated to contract and then stretched from L1 to L2 produces more force after the initial transient decays than if it is stimulated at L2. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed) was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement

    Conformation-regulated mechanosensory control via titin domains in cardiac muscle

    Get PDF
    The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains
    corecore