6,999 research outputs found

    Optimum linear adaptive design of dominant type systems with large parameter variations

    Get PDF
    Optimum design of compensating feedback control system with parameter variation

    Optimum linear adaptive design of dominant type systems with large parameter variations Semiannual status report, period ending 30 Sep. 1968

    Get PDF
    Optimum linear adaptive design of dominant type systems with large parameter variation

    Quantum Simulations of Nuclei and Nuclear Pasta with the Multi-resolution Adaptive Numerical Environment for Scientific Simulations

    Full text link
    Neutron star and supernova matter at densities just below the nuclear matter saturation density is expected to form a lattice of exotic shapes. These so-called nuclear pasta phases are caused by Coulomb frustration. Their elastic and transport properties are believed to play an important role for thermal and magnetic field evolution, rotation and oscillation of neutron stars. Furthermore, they can impact neutrino opacities in core-collapse supernovae. In this work, we present proof-of-principle 3D Skyrme Hartree-Fock (SHF) simulations of nuclear pasta with the Multi-resolution ADaptive Numerical Environment for Scientific Simulations (MADNESS). We perform benchmark studies of 16O^{16} \mathrm{O}, 208Pb^{208} \mathrm{Pb} and 238U^{238} \mathrm{U} nuclear ground states and calculate binding energies via 3D SHF simulations. Results are compared with experimentally measured binding energies as well as with theoretically predicted values from an established SHF code. The nuclear pasta simulation is initialized in the so-called waffle geometry as obtained by the Indiana University Molecular Dynamics (IUMD) code. The size of the unit cell is 24\:fm with an average density of about ρ=0.05fm3\rho = 0.05 \:\mathrm{fm}^{-3}, proton fraction of Yp=0.3Y_p = 0.3 and temperature of T=0T=0\:MeV. Our calculations reproduce the binding energies and shapes of light and heavy nuclei with different geometries. For the pasta simulation, we find that the final geometry is very similar to the initial waffle state. In the present pasta calculations spin-orbit forces are not included but will be added in the future. Within the MADNESS framework, we can successfully perform calculations of inhomogeneous nuclear matter. By using pasta configurations from IUMD it is possible to explore different geometries and test the impact of self-consistent calculations on the latter.Comment: 16 pages, 15 figures, 4 tables; additional section about spin-orbit impact on the shape of the pasta phas

    Regularization of identity based solution in string field theory

    Full text link
    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.Comment: 9 pages, minor typos corrected and references adde

    Black Holes with Multiple Charges and the Correspondence Principle

    Get PDF
    We consider the entropy of near extremal black holes with multiple charges in the context of the recently proposed correspondence principle of Horowitz and Polchinski, including black holes with two, three and four Ramond-Ramond charges. We find that at the matching point the black hole entropy can be accounted for by massless open strings ending on the D-branes for all cases except a black hole with four Ramond-Ramond charges, in which case a possible resolution in terms of brane-antibrane excitations is considered.Comment: 26 pages, harvmac, minor correction

    A Correspondence Principle for Black Holes and Strings

    Get PDF
    For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes.Comment: 24 pages, one typo correcte

    Counting States of Black Strings with Traveling Waves

    Get PDF
    We consider a family of solutions to string theory which depend on arbitrary functions and contain regular event horizons. They describe six dimensional extremal black strings with traveling waves and have an inhomogeneous distribution of momentum along the string. The structure of these solutions near the horizon is studied and the horizon area computed. We also count the number of BPS string states at weak coupling whose macroscopic momentum distribution agrees with that of the black string. It is shown that the number of such states is given by the Bekenstein-Hawking entropy of the black string with traveling waves.Comment: 21 pages RevTex. One equation correcte

    Field-Effect Transistor on SrTiO3 with sputtered Al2O3 Gate Insulator

    Full text link
    A field-effect transistor that employs a perovskite-type SrTiO3 single crystal as the semiconducting channel is revealed to function as n-type accumulation-mode device with characteristics similar to that of organic FET's. The device was fabricated at room temperature by sputter-deposition of amorphous Al2O3 films as a gate insulator on the SrTiO3 substrate. The field-effect(FE) mobility is 0.1cm2/Vs and on-off ratio exceeds 100 at room temperature. The temperature dependence of the FE mobility down to 2K shows a thermal-activation-type behavior with an activation energy of 0.6eV

    Breaking stress of neutron star crust

    Full text link
    The breaking stress (the maximum of the stress-strain curve) of neutron star crust is important for neutron star physics including pulsar glitches, emission of gravitational waves from static mountains, and flares from star quakes. We perform many molecular dynamic simulations of the breaking stress at different coupling parameters (inverse temperatures) and strain rates. We describe our results with the Zhurkov model of strength. We apply this model to estimate the breaking stress for timescales ~1 s - 1 year, which are most important for applications, but much longer than can be directly simulated. At these timescales the breaking stress depends strongly on the temperature. For coupling parameter <200, matter breaks at very small stress, if it is applied for a few years. This viscoelastic creep can limit the lifetime of mountains on neutron stars. We also suggest an alternative model of timescale-independent breaking stress, which can be used to estimate an upper limit on the breaking stress.Comment: 5 pages, 2 figures. Accepted for publication in MNRAS Letter

    Black hole entropy reveals a 12th "dimension"

    Get PDF
    The Beckenstein-Hawking black hole entropy in string theory and its extensions, as expressed in terms of charges that correspond to central extensions of the supersymmetry algebra, has more symmetries than U-duality. It is invariant under transformations of the charges, involving a 12th (or 13th) ``dimension''. This is an indication that the secret theory behind string theory has a superalgebra involving Lorentz non-scalar extensions (that are not strictly central), as suggested in S-theory, and which could be hidden in M- or F- theories. It is suggested that the idea of spacetime is broader than usual, and that a larger ``spacetime" is partially present in black holes.Comment: Latex, 20 pages, minor formatting correction
    corecore