2,497 research outputs found

    Line and Continuum Variability in Active Galaxies

    Full text link
    We compared optical spectroscopic and photometric data for 18 AGN galaxies over 2 to 3 epochs, with time intervals of typically 5 to 10 years. We used the Multi-Object Double Spectrograph (MODS) at the Large Binocular Telescope (LBT) and compared the spectra to data taken from the SDSS database and the literature. We find variations in the forbidden oxygen lines as well as in the hydrogen recombination lines of these sources. For 4 of the sources we find that, within the calibration uncertainties, the variations in continuum and line spectra of the sources are very small. We argue that it is mainly the difference in black hole mass between the samples that is responsible for the different degree of continuum variability. In addition we find that for an otherwise constant accretion rate the total line variability (dominated by the narrow line contributions) reverberates the continuum variability with a dependency ΔLline(ΔLcont.)32\Delta L_{line} \propto (\Delta L_{cont.})^{\frac{3}{2}}. Since this dependency is prominently expressed in the narrow line emission it implies that the luminosity dominating part of the narrow line region must be very compact with a size of the order of at least 10 light years. A comparison to literature data shows that these findings describe the variability characteristics of a total of 61 broad and narrow line sources.Comment: 30 pages including the appendix, 18 figures including the appendix. Accepted 2015 September 3. Received 2015 August 24; in original form 2015 July 3 in Monthly Notices of the Royal Astronomical Societ

    Sequential star formation in IRAS 06084-0611 (GGD 12-15): From intermediate-mass to high-mass stars

    Get PDF
    Context. The formation and early evolution of high- and intermediate-mass stars towards the main sequence involves the interplay of stars in a clustered and highly complex environment. To obtain a full census of this interaction, the Formation and Early evolution of Massive Stars (FEMS) collaboration studies a well-selected sample of 10 high-mass star-forming regions. Aims. In this study we examine the stellar content of the high-mass star-forming region centered on IRAS 06084-0611 in the Monoceros R2 cloud. Methods. Using the near-infrared H- and K-band spectra from the VLT/SINFONI instrument on the ESO Very Large Telescope (VLT)and photometric near-infrared NTT/SOFI, 2MASS and Spitzer/IRAC data, we were able to determine the spectral types for the most luminous stars in the cluster. Results. Two very young and reddened massive stars have been detected by SINFONI: a massive Young Stellar Object (YSO) con- sistent with an early-B spectral type and a Herbig Be star. Furthermore, stars of spectral type G and K are detected while still in the Pre-Main Sequence (PMS) phase. We derive additional properties such as temperatures, extinctions, radii and masses. We present a Hertzsprung-Russell diagram and find most objects having intermediate masses between \sim1.5-2.5 M\odot. For these stars we derive a median cluster age of \sim4 Myr. Conclusions. Using Spitzer/IRAC data we confirm earlier studies that the younger class 0/I objects are centrally located while the class II objects are spread out over a larger area, with rough scale size radii of \sim0.5 pc and \sim1.25 pc respectively. Moreover, the presence of a massive YSO, an ultracompact H ii region and highly reddened objects in the center of the cluster suggest a much younger age of < 1 Myr. A possible scenario for this observation would be sequential star formation along the line of sight; from a cluster of intermediate-mass to high-mass stars.Comment: 14 pages, 10 figures, 2 tables. Astronomy and Astrophysic

    SUBARU and e-Merlin observations of NGC3718. Diaries of an SMBH recoil?

    Full text link
    NGC3718 is a LINER L1.9L1.9 galaxy, lying at a distance of about 17.4\sim 17.4 Mpc away from earth and its similarities with NGC5128 often award it the name "northern Centaurus A". We use high angular resolution (100\sim100 mas) e-Merlin radio and SUBARU NIR (170\sim170 mas) data, to take a detailed view of the processes taking place in its central region. In order to preserve some objectivity in our interpretation, we combine our results with literature values and findings from previous studies. Our NIR maps suggest, on one hand, that towards the stellar bulge there are no large scale absorption phenomena caused by the apparent dust lane and, on the other, that there is a significant (local) contribution from hot (1000\sim1000 K) dust to the nuclear NIR emission. The position where this takes place appears to be closer to the offset compact radio emission from our e-Merlin 66 cm map, lying offset by 4.25\sim4.25 pc from the center of the underlying stellar bulge. The shape of the radio map suggests the presence of one (or possibly two, forming an X-shape) bipolar structure(s) 1\sim1 (0.6\sim0.6) arcsec across, which combined with the balance between the gas and the stellar velocity dispersions and the presence of hard X-ray emission, point towards effects expected by AGN feedback. We also argue that NGC3718 has a "core" in its surface brightness profile, despite the fact that it is a gas-rich galaxy and we discuss its mixed photometric and spectroscopic characteristics. The latter combined with the observed spatial and radio offsets, the relative redshift between the broad and the narrow HαH{\mathrm{\alpha}} line, the limited star formation activity and AGN feedback, strongly imply the existence of an SMBH recoil. Finally, we discuss a possible interpretation, that could naturally incorporate all these findings into one physically consistent picture.Comment: 18 pages, 18 figures, 3 tables, accepted for publications in A&

    Peer-review in a world with rational scientists: Toward selection of the average

    Full text link
    One of the virtues of peer review is that it provides a self-regulating selection mechanism for scientific work, papers and projects. Peer review as a selection mechanism is hard to evaluate in terms of its efficiency. Serious efforts to understand its strengths and weaknesses have not yet lead to clear answers. In theory peer review works if the involved parties (editors and referees) conform to a set of requirements, such as love for high quality science, objectiveness, and absence of biases, nepotism, friend and clique networks, selfishness, etc. If these requirements are violated, what is the effect on the selection of high quality work? We study this question with a simple agent based model. In particular we are interested in the effects of rational referees, who might not have any incentive to see high quality work other than their own published or promoted. We find that a small fraction of incorrect (selfish or rational) referees can drastically reduce the quality of the published (accepted) scientific standard. We quantify the fraction for which peer review will no longer select better than pure chance. Decline of quality of accepted scientific work is shown as a function of the fraction of rational and unqualified referees. We show how a simple quality-increasing policy of e.g. a journal can lead to a loss in overall scientific quality, and how mutual support-networks of authors and referees deteriorate the system.Comment: 5 pages 4 figure

    Nuclear Activity and the Conditions of Star-formation at the Galactic Center

    Full text link
    The Galactic Center is the closest galactic nucleus that can be studied with unprecedented angular resolution and sensitivity. We summarize recent basic observational results on Sagittarius A* and the conditions for star formation in the central stellar cluster. We cover results from the radio, infrared, and X-ray domain and include results from simulation as well. From (sub-)mm and near-infrared variability and near-infrared polarization data we find that the SgrA* system (supermassive black hole spin, a potential temporary accretion disk and/or outflow) is well ordered in its geometrical orientation and in its emission process that we assume to reflect the accretion process onto the supermassive black hole (SMBH).Comment: 11 pages, 4 figures, 1 table; published in PoS-SISSA Proceedings of the: Frontier Research in Astrophysics - II, 23-28 May 2016, Mondello (Palermo), Ital

    Further Wolf-Rayet stars in the starburst cluster Westerlund 1

    Get PDF
    We present new low and intermediate-resolution spectroscopic observations of the Wolf Rayet (WR) star population in the massive starburst cluster Westerlund 1. Finding charts are presented for five new WRs - four WNL and one WCL - raising the current total of known WRs in the cluster to 19. We also present new spectra and correct identifications for the majority of the 14 WR stars previously known, notably confirming the presence of two WNVL stars. Finally we briefly discuss the massive star population of Westerlund 1 in comparison to other massive young galactic clusters.Comment: Accepted for publication in Astronomy & Astrophysics. Eight pages, six figures. Replaced with final version, some minor change

    L- and M-band imaging observations of the Galactic Center region

    Full text link
    We present near-infrared H-, K-, L- and M-band photometry of the Galactic Center from images obtained at the ESO VLT in May and August 2002, using the NAOS/CONICA (H and K) and the ISAAC (L and M) instruments. The large field of view (70" x 70") of the ISAAC instrument and the large number of sources identified (L-M data for 541 sources) allows us to investigate colors, infrared excesses and extended dust emission. Our new L-band magnitude calibration reveals an offset to the traditionally used calibrations, which we attribute to the use of the variable star IRS7 as a flux calibrator. Together with new results on the extinction towards the Galactic Center (Scoville et al. 2003; Raab 2000), our magnitude calibration results in stellar color properties expected from standard stars and removes any necessity to modify the K-band extinction. The large number of sources for which we have obtained L-M colors allows us to measure the M-band extinction to A_M=(0.056+-0.006)A_V (approximately =A_L), a considerably higher value than what has so far been assumed. L-M color data has not been investigated previously, due to lack of useful M-band data. We find that this color is a useful diagnostic tool for the preliminary identification of stellar types, since hot and cool stars show a fairly clear L-M color separation. This is especially important if visual colors are not available, as in the Galactic Center. For one of the most prominent dust embedded sources, IRS3, we find extended L- and M-band continuum emission with a characteristic bow-shock shape. An explanation for this appearance is that IRS3 consists of a massive, hot, young mass-losing star surrounded by an optically thick, extended dust shell, which is pushed northwest by wind from the direction of the IRS16 cluster and SgrA*.Comment: 24 pages, 7 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Probing the Early Evolution of Young High-Mass Stars

    Get PDF
    Near-infrared imaging surveys of high-mass star-forming regions reveal an amazingly complex interplay between star formation and the environment (Churchwell et al. 2006; Alvarez et al. 2004). By means of near-IR spectroscopy the embedded massive young stars can be characterized and placed in the context of their birth site. However, so far spectroscopic surveys have been hopelessly incomplete, hampering any systematic study of these very young massive stars. New integral field instrumentation available at ESO has opened the possibility to take a huge step forward by obtaining a full spectral inventory of the youngest massive stellar populations in star-forming regions currently accessible. Simultaneously, the analysis of the extended emission allows the characterization of the environmental conditions. The Formation and Early Evolution of Massive Stars (FEMS) collaboration aims at setting up a large observing campaign to obtain a full census of the stellar content, ionized material, outflows and PDR's over a sample of regions that covers a large parameter space. Complementary radio, mm and infrared observations will be used for the characterization of the deeply embedded population. For the first eight regions we have obtained 40 hours of SINFONI observations. In this contribution, we present the first results on three regions that illustrate the potential of this strategy.Comment: To appear in ASP Conf. Proceedings of "Massive Star Formation: Observations confront Theory", H. Beuther et al. (eds.), held in Heidelberg, September 200
    corecore