3,654 research outputs found
Aggregation of chemotactic organisms in a differential flow
We study the effect of advection on the aggregation and pattern formation in
chemotactic systems described by Keller-Segel type models. The evolution of
small perturbations is studied analytically in the linear regime complemented
by numerical simulations. We show that a uniform differential flow can
significantly alter the spatial structure and dynamics of the chemotactic
system. The flow leads to the formation of anisotropic aggregates that move
following the direction of the flow, even when the chemotactic organisms are
not directly advected by the flow. Sufficiently strong advection can stop the
aggregation and coarsening process that is then restricted to the direction
perpendicular to the flow
An experimental documentation of a hypersonic shock-wave turbulent boundary layer interaction flow: With and without separation
An experiment, thoroughly documenting the flow field resulting from the interaction of a shock wave with a nonadiabatic hypersonic turbulent boundary layer, is described. Detailed mean flow and surface data are presented for two shock strengths resulting in attached and separated flows, respectively. The surface measurements include continuous pressure, shear and heat-flux distributions upstream, in, and downstream of the interaction regions. At closely spaced intervals along the surface, boundary-layer profiles of static and pitot pressure and total temperature were obtained from which velocity, density and static temperature profiles were derived. The data are presented in both graphical and tabular form. These data are of sufficient detail to validate advanced computer codes and their associated turbulence models
Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
Compact solid discharge products enable energy storage devices with high
gravimetric and volumetric energy densities, but solid deposits on active
surfaces can disturb charge transport and induce mechanical stress. In this
Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals
in lithium-oxygen batteries with organic electrolytes, based on a theory of
electrochemical non-equilibrium thermodynamics originally applied to Li-ion
batteries. As in the case of lithium insertion in phase-separating LiFePO4
nanoparticles, the theory predicts a transition from complex to uniform
morphologies of Li2O2 with increasing current. Discrete particle growth at low
discharge rates becomes suppressed at high rates, resulting in a film of
electronically insulating Li2O2 that limits cell performance. We predict that
the transition between these surface growth modes occurs at current densities
close to the exchange current density of the cathode reaction, consistent with
experimental observations.Comment: 8 pages, 6 fig
Absolute instabilities of travelling wave solutions in a Keller-Segel model
We investigate the spectral stability of travelling wave solutions in a
Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity
function and a constant, sublinear, and linear consumption rate. Linearising
around the travelling wave solutions, we locate the essential and absolute
spectrum of the associated linear operators and find that all travelling wave
solutions have essential spectrum in the right half plane. However, we show
that in the case of constant or sublinear consumption there exists a range of
parameters such that the absolute spectrum is contained in the open left half
plane and the essential spectrum can thus be weighted into the open left half
plane. For the constant and sublinear consumption rate models we also determine
critical parameter values for which the absolute spectrum crosses into the
right half plane, indicating the onset of an absolute instability of the
travelling wave solution. We observe that this crossing always occurs off of
the real axis
Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study
We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states
The one-dimensional Keller-Segel model with fractional diffusion of cells
We investigate the one-dimensional Keller-Segel model where the diffusion is
replaced by a non-local operator, namely the fractional diffusion with exponent
. We prove some features related to the classical
two-dimensional Keller-Segel system: blow-up may or may not occur depending on
the initial data. More precisely a singularity appears in finite time when
and the initial configuration of cells is sufficiently concentrated.
On the opposite, global existence holds true for if the initial
density is small enough in the sense of the norm.Comment: 12 page
On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis
In this article we deal with a class of strongly coupled parabolic systems
that encompasses two different effects: degenerate diffusion and chemotaxis.
Such classes of equations arise in the mesoscale level modeling of biomass
spreading mechanisms via chemotaxis. We show the existence of an exponential
attractor and, hence, of a finite-dimensional global attractor under certain
'balance conditions' on the order of the degeneracy and the growth of the
chemotactic function
- …
