3,654 research outputs found

    Aggregation of chemotactic organisms in a differential flow

    Get PDF
    We study the effect of advection on the aggregation and pattern formation in chemotactic systems described by Keller-Segel type models. The evolution of small perturbations is studied analytically in the linear regime complemented by numerical simulations. We show that a uniform differential flow can significantly alter the spatial structure and dynamics of the chemotactic system. The flow leads to the formation of anisotropic aggregates that move following the direction of the flow, even when the chemotactic organisms are not directly advected by the flow. Sufficiently strong advection can stop the aggregation and coarsening process that is then restricted to the direction perpendicular to the flow

    An experimental documentation of a hypersonic shock-wave turbulent boundary layer interaction flow: With and without separation

    Get PDF
    An experiment, thoroughly documenting the flow field resulting from the interaction of a shock wave with a nonadiabatic hypersonic turbulent boundary layer, is described. Detailed mean flow and surface data are presented for two shock strengths resulting in attached and separated flows, respectively. The surface measurements include continuous pressure, shear and heat-flux distributions upstream, in, and downstream of the interaction regions. At closely spaced intervals along the surface, boundary-layer profiles of static and pitot pressure and total temperature were obtained from which velocity, density and static temperature profiles were derived. The data are presented in both graphical and tabular form. These data are of sufficient detail to validate advanced computer codes and their associated turbulence models

    Rate-dependent morphology of Li2O2 growth in Li-O2 batteries

    Full text link
    Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.Comment: 8 pages, 6 fig

    Absolute instabilities of travelling wave solutions in a Keller-Segel model

    Full text link
    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis

    Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study

    Get PDF
    We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states

    The one-dimensional Keller-Segel model with fractional diffusion of cells

    Get PDF
    We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local operator, namely the fractional diffusion with exponent 0<α20<\alpha\leq 2. We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data. More precisely a singularity appears in finite time when α<1\alpha<1 and the initial configuration of cells is sufficiently concentrated. On the opposite, global existence holds true for α1\alpha\leq1 if the initial density is small enough in the sense of the L1/αL^{1/\alpha} norm.Comment: 12 page

    On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis

    Get PDF
    In this article we deal with a class of strongly coupled parabolic systems that encompasses two different effects: degenerate diffusion and chemotaxis. Such classes of equations arise in the mesoscale level modeling of biomass spreading mechanisms via chemotaxis. We show the existence of an exponential attractor and, hence, of a finite-dimensional global attractor under certain 'balance conditions' on the order of the degeneracy and the growth of the chemotactic function
    corecore