2,603 research outputs found
Explaining global increases in water use efficiency: why have we overestimated responses to rising atmospheric CO(2) in natural forest ecosystems?
BackgroundThe analysis of tree-ring carbon isotope composition (δ(13)C) has been widely used to estimate spatio-temporal variations in intrinsic water use efficiency (iWUE) of tree species. Numerous studies have reported widespread increases in iWUE coinciding with rising atmospheric CO(2) over the past century. While this could represent a coherent global response, the fact that increases of similar magnitude were observed across biomes with no apparent effect on tree growth raises the question of whether iWUE calculations reflect actual physiological responses to elevated CO(2) levels.Methodology/resultsHere we use Monte Carlo simulations to test if an artifact of calculation could explain observed increases in iWUE. We show that highly significant positive relationships between iWUE and CO(2) occur even when simulated data (randomized δ(13)C values spanning the observed range) are used in place of actual tree-ring δ(13)C measurements. From simulated data sets we calculated non-physiological changes in iWUE from 1900 to present and across a 4000 m altitudinal range. This generated results strikingly similar to those reported in recent studies encompassing 22 species from tropical, subtropical, temperate, boreal and mediterranean ecosystems. Only 6 of 49 surveyed case studies showed increases in iWUE significantly higher than predicted from random values.Conclusions/significanceOur results reveal that increases in iWUE estimated from tree-ring δ(13)C occur independently of changes in (13)C discrimination that characterize physiological responses to elevated CO(2). Due to a correlation with CO(2) concentration, which is used as an independent factor in the iWUE calculation, any tree-ring δ(13)C data set would inevitably generate increasing iWUE over time. Therefore, although consistent, previously reported trends in iWUE do not necessarily reflect a coherent global response to rising atmospheric CO(2). We discuss the significance of these findings and suggest ways to distinguish real from artificial responses in future studies
Comment on Zwally and others (2015)-mass gains of the Antarctic ice sheet exceed losses
In their article ‘Mass gains of the Antarctic ice sheet exceed losses’ Zwally and others (2015) choose Vostok Subglacial Lake as an exemplary region to demonstrate their inference of surface height change rates from a portion of the ICESat mission’s laser altimetry data (2003–08). In their appendix, they discuss some of the remarkable differences between their results and those reported by Richter and others (2008, 2013, 2014). However, the selective consideration of our works and the misleading or incorrect interpretation of our results call for clarificationFil: Richter, Andreas Jorg. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Technische Universitaet Dresden; AlemaniaFil: Horwath, M.. Technische Universitaet Dresden; AlemaniaFil: Dietrich, R.. Technische Universitaet Dresden; Alemani
The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations
The present paper solves completely the problem of the group classification
of nonlinear heat-conductivity equations of the form\
. We have proved, in particular,
that the above class contains no nonlinear equations whose invariance algebra
has dimension more than five. Furthermore, we have proved that there are two,
thirty-four, thirty-five, and six inequivalent equations admitting one-, two-,
three-, four- and five-dimensional Lie algebras, respectively. Since the
procedure which we use, relies heavily upon the theory of abstract Lie algebras
of low dimension, we give a detailed account of the necessary facts. This
material is dispersed in the literature and is not fully available in English.
After this algebraic part we give a detailed description of the method and then
we derive the forms of inequivalent invariant evolution equations, and compute
the corresponding maximal symmetry algebras. The list of invariant equations
obtained in this way contains (up to a local change of variables) all the
previously-known invariant evolution equations belonging to the class of
partial differential equations under study.Comment: 45 page
Implications of using On-Farm Flood Flow Capture to recharge groundwater and mitigate flood risks along the Kings River, CA
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M)
Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations.
This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region
On-Farm Flood Flow Capture – addressing flood risks and groundwater overdraft in the Kings Basin, with potential applications throughout the Central Valley
Project fact sheet prepared in cooperation with the USDA Natural Resources Conservation Service and the Kings River Conservation District
Developing effective child death review : a study of ‘early starter’ child death overview panels in England
Aim This qualitative study of a small number of child
death overview panels aimed to observe and describe
their experience in implementing new child death review
processes, and making prevention recommendations.
Methods Nine sites reflecting a geographic and
demographic spread were selected from Local
Safeguarding Children Boards across England. Data were
collected through a combination of questionnaires,
interviews, structured observations, and evaluation of
documents. Data were subjected to qualitative analysis.
Results Data analysis revealed a number of themes
within two overarching domains: the systems and
structures in place to support the process; and the
process and function of the panels. The data emphasised
the importance of child death review being
a multidisciplinary process involving senior professionals;
that the process was resource and time intensive; that
effective review requires both quantitative and
qualitative information, and is best achieved through
a structured analytic framework; and that the focus
should be on learning lessons, not on trying to apportion
blame. In 17 of the 24 cases discussed by the panels,
issues were raised that may have indicated preventable
factors. A number of examples of recommendations
relating to injury prevention were observed including
public awareness campaigns, community safety
initiatives, training of professionals, development of
protocols, and lobbying of politicians.
Conclusions The results of this study have helped to
inform the subsequent establishment of child death
overview panels across England. To operate effectively,
panels need a clear remit and purpose, robust structures
and processes, and committed personnel. A multiagency
approach contributes to a broader understanding
of and response to children’s deaths
Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.
Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices
- …
