229 research outputs found
Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer
A high purity germanium crystal was operated in liquid argon as a Compton
suppressed radiation spectrometer. Spectroscopic quality resolution of less
than 1% of the full-width half maximum of full energy deposition peaks was
demonstrated. The construction of the small apparatus used to obtain these
results is reported. The design concept is to use the liquid argon bath to both
cool the germanium crystal to operating temperatures and act as a scintillating
veto. The scintillation light from the liquid argon can veto cosmic-rays,
external primordial radiation, and gamma radiation that does not fully deposit
within the germanium crystal. This technique was investigated for its potential
impact on ultra-low background gamma-ray spectroscopy. This work is based on a
concept initially developed for future germanium-based neutrinoless double-beta
decay experiments.Comment: Paper presented at the SORMA XI Conference, Ann Arbor, MI, May 200
Real-time digital signal processor implementation of self-calibrating pulse-shape discriminator for high purity germanium
Pulse-shape analysis of the ionization signals from germanium gamma-ray
spectrometers is a method for obtaining information that can characterize an
event beyond just the total energy deposited in the crystal. However, as
typically employed, this method is data-intensive requiring the digitization,
transfer, and recording of electronic signals from the spectrometer. A hardware
realization of a real-time digital signal processor for implementing a
parametric pulse shape is presented. Specifically, a previously developed
method for distinguishing between single-site and multi-site gamma-ray
interactions is demonstrated in an on-line digital signal processor, compared
with the original off-line pulse-shape analysis routine, and shown to have no
significant difference. Reduction of the amount of the recorded information per
event is shown to translate into higher duty-cycle data acquisition rates while
retaining the benefits of additional event characterization from pulse-shape
analysis.Comment: Accepted by NIM
CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors
CoGeNT employs p-type point-contact (PPC) germanium detectors to search for
Weakly Interacting Massive Particles (WIMPs). By virtue of its low energy
threshold and ability to reject surface backgrounds, this type of device allows
an emphasis on low-mass dark matter candidates (wimp mass of about 10 GeV/c2).
We report on the characteristics of the PPC detector presently taking data at
the Soudan Underground Laboratory, elaborating on aspects of shielding, data
acquisition, instrumental stability, data analysis, and background estimation.
A detailed background model is used to investigate the low energy excess of
events previously reported, and to assess the possibility of temporal
modulations in the low-energy event rate. Extensive simulations of all
presently known backgrounds do not provide a viable background explanation for
the excess of low-energy events in the CoGeNT data, or the previously observed
temporal variation in the event rate. Also reported on for the first time is a
determination of the surface (slow pulse rise time) event contamination in the
data as a function of energy. We conclude that the CoGeNT detector technology
is well suited to search for the annual modulation signature expected from dark
matter particle interactions in the region of WIMP mass and coupling favored by
the DAMA/LIBRA resultsComment: 20 pages, 31 figures. Several figures have been added, including an
updated allowed region (both 90% and 99% confidence level contours) based on
this analysis. There is also the addition of a Pb-210 background estimat
Measurement of the Absolute np Scattering Differential Cross Section at 194 MeV
We describe a double-scattering experiment with a novel tagged neutron beam
to measure differential cross sections for np back-scattering to better than 2%
absolute precision. The measurement focuses on angles and energies where the
cross section magnitude and angle-dependence constrain the charged pion-nucleon
coupling constant, but existing data show serious discrepancies among
themselves and with energy-dependent partial wave analyses (PWA). The present
results are in good accord with the PWA, but deviate systematically from other
recent measurements.Comment: 4 pages, 4 figure
Investigation of the microwave effect
Over the past decades, microwave sintering has been investigated, and the effects of microwave sintering have been demonstrated, however there is still uncertainty as to what is causing the enhancements known as the microwave effect .
For a better understanding of the microwave effect , the effect of microwaves on the pore size distribution during densification has been investigated for submicron-sized zinc oxide (ZnO), which was sintered with conventional heating and varying amounts of microwave power but always maintaining exactly the same time-temperature profile. Initially, the density of the sintered samples was measured and compared; this proved that the densification of the hybrid sintered samples was increased and that the higher the level of microwaves used, the more it enhanced the densification. After this, the porosity was investigated through the use of nitrogen adsorption analysis, mercury porosimetry and Field Emission Gun Scanning Electron Microscopy (FEGSEM). Initially, it was found that sintering with microwaves reduces pores faster than for conventional sintering as expected. However, the experiments also revealed that the mechanisms of the reduction in the porosity were not different for microwave sintering compared to conventional sintering. When the porosity was compared at equivalent densities, it was observed that there was no significant difference, either in terms of the amount of porosity or the microstructure development. Since the structural development was the same for both conventional and hybrid sintering, it was concluded that the cause for the enhancement of the densification was enhanced diffusion caused by an additional driving force induced by the microwave field.
The investigation of the solid-state reaction between zinc oxide and alumina was designed to investigate whether the diffusion associated with reactions was also enhanced by the use of microwaves. Therefore, zinc oxide and alumina samples were reacted as diffusion couples using conventional and hybrid heating, the latter with varying amounts of microwave power. The analyses of the reaction layer using FEGSEM showed an increase in the reaction product layer thickness when hybrid heating was used, with a higher level of microwaves yielding more growth. These results supported the view that the enhanced reaction rates were caused by enhanced diffusion, again caused by an additional driving force induced by the microwave field. For both the densification and reaction cases, the most likely additional driving force is considered to be the ponderomotive effect
Experimental constraints on a dark matter origin for the DAMA annual modulation effect
A claim for evidence of dark matter interactions in the DAMA experiment has
been recently reinforced. We employ a new type of germanium detector to
conclusively rule out a standard isothermal galactic halo of Weakly Interacting
Massive Particles (WIMPs) as the explanation for the annual modulation effect
leading to the claim. Bounds are similarly imposed on a suggestion that dark
pseudoscalars mightlead to the effect. We describe the sensitivity to light
dark matter particles achievable with our device, in particular to
Next-to-Minimal Supersymmetric Model candidates.Comment: v4: introduces recent results from arXiv:0807.3279 and
arXiv:0807.2926. Sensitivity to pseudoscalars is revised in light of the
first. Discussion on the subject adde
- …
