107 research outputs found

    The Growth and Structure of Dark Matter Haloes

    Get PDF
    In this paper, we analyse in detail the mass-accretion histories and structural properties of dark haloes in high-resolution N-body simulations. Modeling the density distribution in individual haloes with the NFW profile, we find, for all main progenitors of a given halo, there is a tight correlation between its inner scale radius rsr_s and the mass within it, MsM_s, which is the basic reason why halo structural properties are closely related to their mass-accretion histories. This correlation can be used to predict accurately the structural properties of a dark halo at any time from its mass-accretion history. We also test our model with a large sample of GIF haloes. The build-up of dark haloes in CDM models generally consists of an early phase of fast accretion and a late phase of slow accretion [where MhM_h increases with time approximately as the expansion rate]. These two phases are separated at a time when the halo concentration parameter c4c\sim 4. Haloes in the two accretion phases show systematically different properties, for example, the circular velocity vhv_h increases rapidly with time in the fast accretion phase but remain almost constant in the slow accretion phase,the inner properties of a halo, such as rsr_s and MsM_s increase rapidly with time in the fast accretion phase but change only slowly in the slow accretion phase. The potential well associated with a halo is built up mainly in the fast accretion phase, even though a large amount of mass (over 10 times) can be accreted in the slow accretion phase. We discuss our results in connection to the formation of dark haloes and galaxies in hierarchical models.Comment: 26 pages, including 10 figures. v2: some conceptual changes. Accepted for publication in MNRA

    The statistical nature of the brightest group galaxies

    Full text link
    We examine the statistical properties of the brightest group galaxies (BGGs) using a complete spectroscopic sample of groups/clusters of galaxies selected from the Data Release 7 of the Sloan Digital Sky Survey. We test whether BGGs and other bright members of groups are consistent with an ordered population among the total population of group galaxies. We find that the luminosity distributions of BGGs do not follow the predictions from the order statistics (OS). The average luminosities of BGGs are systematically brighter than OS predictions. On the other hand, by properly taking into account the brightening effect of the BGGs, the luminosity distributions of the second brightest galaxies are in excellent agreement with the expectations of OS. The brightening of BGGs relative to the OS expectation is consistent with a scenario that the BGGs on average have over-grown about 20 percent masses relative to the other member galaxies. The growth (ΔM\Delta M) is not stochastic but correlated with the magnitude gap (G1,2G_{1,2}) between the brightest and the second brightest galaxy. The growth (ΔM\Delta M) is larger for the groups having more prominent BGGs (larger G1,2G_{1,2}) and averagely contributes about 30 percent of the final G1,2G_{1,2} of the groups of galaxies.Comment: ApJ accepted, replaced with the accepted versio

    The clustering of galaxies with pseudo bulge and classical bulge in the local Universe

    Full text link
    We investigate the clustering properties and close neighbour counts for galaxies with different types of bulges and stellar masses. We select samples of "classical" and "pseudo" bulges, as well as "bulge-less" disk galaxies, based on the bulge/disk decomposition catalog of SDSS galaxies provided by Simard et al. (2011). For a given galaxy sample we estimate: the projected two-point cross-correlation function with respect to a spectroscopic reference sample, w_p(r_p), and the average background-subtracted neighbour count within a projected separation using a photometric reference sample, N_neighbour(<r_p). We compare the results with the measurements of control samples matched in color, concentration and redshift. We find that, when limited to a certain stellar mass range and matched in color and concentration, all the samples present similar clustering amplitudes and neighbour counts on scales above ~0.1h^{-1}Mpc. This indicates that neither the presence of a central bulge, nor the bulge type is related to intermediate-to-large scale environments. On smaller scales, in contrast, pseudo-bulge and pure-disk galaxies similarly show strong excess in close neighbour count when compared to control galaxies, at all masses probed. For classical bulges, small-scale excess is also observed but only for M_stars < 10^{10} M_sun; at higher masses, their neighbour counts are similar to that of control galaxies at all scales. These results imply strong connections between galactic bulges and galaxy-galaxy interactions in the local Universe, although it is unclear how they are physically linked in the current theory of galaxy formation.Comment: 14 pages, 16 figures, accepted for publication in MNRA
    corecore