6,494 research outputs found
Laboratory measurements of forward and backward scattering of laser beams in water droplet clouds
Many aspects of the forward and backward scattering in dense water droplet clouds were studied using a laboratory scattering facility. This system is configured in a lidar geometry to facilitate comparison of the laboratory results to current lidar oriented theory and measurements. The backscatter measurements are supported with simultaneous measurements of the optical density, mass concentration, and droplet size distribution of the clouds. Measurements of the extinction and backscatter coefficients at several important laser wavelength have provided data on the relationship between these quantities for laboratory clouds at .633, 1.06, and 10.6 microns. The polarization characteristics of the backscatter of 1.06 microns were studied using several different types of clouds. More recently, the laboratory facility was modified to allow range-resolved backscatter measurements at 1.06 microns. Clouds made up of 3 layers, each with its own density, can be constructed. This allows the study of the effect of cloud inhomogeneity on the forward and backscatter
Improved laboratory gradiometer can be a field survey instrument
Improvements made to quartz gradiometer minimize or eliminate disturbing effects from known error sources and permit sensitivity of + or - 1 times 10 to the minus 9th power/sec sq or better and measuring accuracy of + or - 5 times 10 to the minus 9th power/sec sq
Gravity gradient preliminary investigations on exhibit ''A'' Final report
Quartz microbalance gravity gradiometer performance test
LAWS simulation: Sampling strategies and wind computation algorithms
In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS
Monitoring global vegetation
An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth
Measuring atomic NOON-states and using them to make precision measurements
A scheme for creating NOON-states of the quasi-momentum of ultra-cold atoms
has recently been proposed [New J. Phys. 8, 180 (2006)]. This was achieved by
trapping the atoms in an optical lattice in a ring configuration and rotating
the potential at a rate equal to half a quantum of angular momentum . In this
paper we present a scheme for confirming that a NOON-state has indeed been
created. This is achieved by spectroscopically mapping out the anti-crossing
between the ground and first excited levels by modulating the rate at which the
potential is rotated. Finally we show how the NOON-state can be used to make
precision measurements of rotation.Comment: 14 preprint pages, 7 figure
Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing
PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34 weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing
Influence of Context on Item Parameters in Forced-Choice Personality Assessments
A fundamental assumption in computerized adaptive testing (CAT) is that item parameters are invariant with respect to context – items surrounding the administered item. This assumption, however, may not hold in forced-choice (FC) assessments, where explicit comparisons are made between items included in the same block. We empirically examined the influence of context on item parameters by comparing parameter estimates from two FC instruments. The first instrument was compiled of blocks of three items, whereas in the second, the context was manipulated by adding one item to each block, resulting in blocks of four. The item parameter estimates were highly similar. However, a small number of significant deviations were observed, confirming the importance of context when designing adaptive FC assessments. Two patterns of such deviations were identified, and methods to reduce their occurrences in a FC CAT setting were proposed. It was shown that with a small proportion of violations of the parameter invariance assumption, score estimation remained stable
Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady- and presteady-state conditions
Glassy polymers are often used for gas separations because of their high selectivity. Although the dual-mode permeation model correctly fits their sorption and permeation isotherms, its physical interpretation is disputed, and it does not describe permeation far from steady state, a condition expected when separations involve intermittent renewable energy sources. To develop a more comprehensive permeation model, we combine experiment, molecular dynamics, and multiscale reaction–diffusion modeling to characterize the time-dependent permeation of N2 and CO2 through a glassy poly(dimethyl phenylene oxide) membrane, a model system. Simulations of experimental time-dependent permeation data for both gases in the presteady-state and steady-state regimes show that both single- and dual-mode reaction–diffusion models reproduce the experimental observations, and that sorbed gas concentrations lag the external pressure rise. The results point to environment-sensitive diffusion coefficients as a vital characteristic of transport in glassy polymers
Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries
The speed meter concept has been identified as a technique that can
potentially provide laser-interferometric measurements at a sensitivity level
which surpasses the Standard Quantum Limit (SQL) over a broad frequency range.
As with other sub-SQL measurement techniques, losses play a central role in
speed meter interferometers and they ultimately determine the quantum noise
limited sensitivity that can be achieved. So far in the literature, the quantum
noise limited sensitivity has only been derived for lossless or lossy cases
using certain approximations (for instance that the arm cavity round trip loss
is small compared to the arm cavity mirror transmission). In this article we
present a generalised, analytical treatment of losses in speed meters that
allows accurate calculation of the quantum noise limited sensitivity of Sagnac
speed meters with arm cavities. In addition, our analysis allows us to take
into account potential imperfections in the interferometer such as an
asymmetric beam splitter or differences of the reflectivities of the two arm
cavity input mirrors. Finally,we use the examples of the proof-of-concept
Sagnac speed meter currently under construction in Glasgow and a potential
implementation of a Sagnac speed meter in the Einstein Telescope (ET) to
illustrate how our findings affect Sagnac speed meters with meter- and
kilometre-long baselines.Comment: 22 pages, 8 figures, 1 table, (minor corrections and changes made to
text and figures in version 2
- …
