1,140 research outputs found

    Unsupervised Ranking Model for Entity Coreference Resolution

    Full text link
    Coreference resolution is one of the first stages in deep language understanding and its importance has been well recognized in the natural language processing community. In this paper, we propose a generative, unsupervised ranking model for entity coreference resolution by introducing resolution mode variables. Our unsupervised system achieves 58.44% F1 score of the CoNLL metric on the English data from the CoNLL-2012 shared task (Pradhan et al., 2012), outperforming the Stanford deterministic system (Lee et al., 2013) by 3.01%.Comment: Accepted by NAACL 201

    Enriching very large ontologies using the WWW

    Full text link
    This paper explores the possibility to exploit text on the world wide web in order to enrich the concepts in existing ontologies. First, a method to retrieve documents from the WWW related to a concept is described. These document collections are used 1) to construct topic signatures (lists of topically related words) for each concept in WordNet, and 2) to build hierarchical clusters of the concepts (the word senses) that lexicalize a given word. The overall goal is to overcome two shortcomings of WordNet: the lack of topical links among concepts, and the proliferation of senses. Topic signatures are validated on a word sense disambiguation task with good results, which are improved when the hierarchical clusters are used.Comment: 6 page

    Ontology-Aware Token Embeddings for Prepositional Phrase Attachment

    Full text link
    Type-level word embeddings use the same set of parameters to represent all instances of a word regardless of its context, ignoring the inherent lexical ambiguity in language. Instead, we embed semantic concepts (or synsets) as defined in WordNet and represent a word token in a particular context by estimating a distribution over relevant semantic concepts. We use the new, context-sensitive embeddings in a model for predicting prepositional phrase(PP) attachments and jointly learn the concept embeddings and model parameters. We show that using context-sensitive embeddings improves the accuracy of the PP attachment model by 5.4% absolute points, which amounts to a 34.4% relative reduction in errors.Comment: ACL 201
    corecore