2,837 research outputs found
Recommended from our members
A demonstration of 'broken' visual space
It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals although, in line with recent results, participants did not report any noticeable change in the scene. We found that there was no consistent depth ordering of objects that can explain the distance matches participants made in this environment (e.g. A > B > D yet also A < C < D) and hence no single one-to-one mapping between participants’ perceived space and any real 3D environment. Instead, factors that affect pairwise comparisons of distances dictate participants’ performance. These data contradict, more directly than previous experiments, the idea that the visual system builds and uses a coherent 3D internal representation of a scene
Computer-Generated Ovaries to Assist Follicle Counting Experiments
Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries), with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Autonomous quantum machines and the finite sized Quasi-Ideal clock
Processes such as quantum computation, or the evolution of quantum cellular
automata are typically described by a unitary operation implemented by an
external observer. In particular, an interaction is generally turned on for a
precise amount of time, using a classical clock. A fully quantum mechanical
description of such a device would include a quantum description of the clock
whose state is generally disturbed because of the back-reaction on it. Such a
description is needed if we wish to consider finite sized autonomous quantum
machines requiring no external control. The extent of the back-reaction has
implications on how small the device can be, on the length of time the device
can run, and is required if we want to understand what a fully quantum
mechanical treatment of an observer would look like. Here, we consider the
implementation of a unitary by a finite sized device which we call the
"Quasi-Ideal clock", and show that the back-reaction on it can be made
exponentially small in the device's dimension with only a linear increase in
energy. As a result, an autonomous quantum machine need only be of modest size
and or energy. We are also able to solve a long-standing open problem by using
a finite sized quantum clock to approximate the continuous evolution of an
Idealised clock. The result has implications on the equivalence of different
paradigms of quantum thermodynamics, some which allow external control and some
which only allow autonomous thermal machines.Comment: Main text: 9 + 53 pages. V4: Close to the published version, J.
Annales Henri Poincar\'e (2018) [Communicated by David P\'erez-Garc\'ia
Complex Fluids and Hydraulic Fracturing
Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Expression profile of microRNAs in young stroke patients
10.1371/journal.pone.0007689PLoS ONE41
Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte
The Mediterranean endemic seagrass Posidonia
oceanica forms beds characterised by a dense leaf canopy
and a thick root-rhizome ‘matte’. Death of P. oceanica
shoots leads to exposure of the underlying matte, which
can persist for many years, and is termed ‘dead’ matte.
Traditionally, dead matte has been regarded as a degraded
habitat. To test whether this assumption was
true, the motile macroinvertebrates of adjacent living
(with shoots) and dead (without shoots) matte of
P. oceanica were sampled in four different plots located
at the same depth (5–6 m) in Mellieha Bay, Malta
(central Mediterranean). The total number of species
and abundance were significantly higher (ANOVA;
P<0.05 and P<0.01, respectively) in the dead matte
than in living P. oceanica matte, despite the presence of
the foliar canopy in the latter. Multivariate analysis
(MDS) clearly showed two main groups of assemblages,
corresponding to the two matte types. The amphipods
Leptocheirus guttatus and Maera grossimana, and the
polychaete Nereis rava contributed most to the dissimilarity
between the two different matte types. Several
unique properties of the dead matte contributing to the
unexpected higher number of species and abundance of
motile macroinvertebrates associated with this habitat
are discussed. The findings have important implications
for the conservation of bare P. oceanica matte, which
has been generally viewed as a habitat of low ecological
value.peer-reviewe
Eikonal methods applied to gravitational scattering amplitudes
We apply factorization and eikonal methods from gauge theories to scattering
amplitudes in gravity. We hypothesize that these amplitudes factor into an
IR-divergent soft function and an IR-finite hard function, with the former
given by the expectation value of a product of gravitational Wilson line
operators. Using this approach, we show that the IR-divergent part of the
n-graviton scattering amplitude is given by the exponential of the one-loop IR
divergence, as originally discovered by Weinberg, with no additional subleading
IR-divergent contributions in dimensional regularization.Comment: 16 pages, 3 figures; v2: title change and minor rewording (published
version); v3: typos corrected in eqs.(3.2),(4.1
A tiered-layered-staged model for informed consent in personal genome testing
In recent years, developments in genomics technologies have led to the rise of commercial personal genome testing (PGT): broad genome-wide testing for multiple diseases simultaneously. While some commercial providers require physicians to order a personal genome test, others can be accessed directly. All providers advertise directly to consumers and offer genetic risk information about dozens of diseases in one single purchase. The quantity and the complexity of risk information pose challenges to adequate pre-test and post-test information provision and informed consent. There are currently no guidelines for what should constitute informed consent in PGT or how adequate informed consent can be achieved. In this paper, we propose a tiered-layered-staged model for informed consent. First, the proposed model is tiered as it offers choices between categories of diseases that are associated with distinct ethical, personal or societal issues. Second, the model distinguishes layers of information with a first layer offering minimal, indispensable information that is material to all consumers, and additional layers offering more detailed information made available upon request. Finally, the model stages informed consent as a process by feeding information to consumers in each subsequent stage of the process of undergoing a test, and by accommodating renewed consent for test result updates, resulting from the ongoing development of the science underlying PGT. A tiered-layered-staged model for informed consent with a focus on the consumer perspective can help overcome the ethical problems of information provision and informed consent in direct-to-consumer PGT.European Journal of Human Genetics advance online publication, 21 November 2012; doi:10.1038/ejhg.2012.237
- …
