10,606 research outputs found
Flame resistant elastic elastomeric fiber
Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene
Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant
Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc
Greenhouse gas emissions from domestic hot water: heat pumps compared to most commonly used systems
We estimate the emissions of the two most important greenhouse gasses (GHG), carbon dioxide (CO2) and methane (CH4), from the use of modern high-efficiency heat pump water heaters compared to the most commonly used domestic hot water systems: natural gas storage tanks, tankless natural gas demand heaters, electric resistance storage tanks, and tankless electric resistance heaters. We considered both natural gas-powered electric plants and coal-powered plants as the source of the electricity for the heat pumps, the thermal electric storage tanks, and the tankless electric demand heaters. The time-integrated radiative forcing associated with using a heat pump water heater was always smaller than any other means of heating water considered in this study across all time frames including at 20 and 100 years. The estimated amount of CH4 lost during its lifecycle was the most critical factor determining the relative magnitude of the climatic impact. The greatest net climatic benefit within the 20-year time frame was predicted to be achieved when a storage natural gas water heater (the most common system for domestic hot water in the United States) fueled by shale gas was replaced with a high efficiency heat pump water heater powered by coal-generated electricity; the heat pump system powered by renewable electricity would have had an even greater climatic benefit, but was not explicitly modeled in this study. Our analysis provides the first assessment of the GHG footprint associated with using a heat pump water heater, which we demonstrate to be an effective and economically viable way of reducing emissions of GHGs.This study was funded by the Wallace Global Fund, the Park Foundation, and Cornell University
A detailed X-ray investigation of zeta Puppis IV. Further characterization of the variability
Previously, the X-ray emission of zeta Puppis was found to be variable with
light curves harbouring "trends" with a typical timescale longer than the
exposure length. The origin of these changes was proposed to be linked to
large-scale structures in the wind, but further characterization of the
variability at high energies was needed. Since then, a number of new X-ray
observations have become available. Furthermore, a cyclic behaviour with a
1.78d period was identified in long optical photometric runs, which is thought
to be associated with the launching mechanism of large-scale wind structures.
We analysed these new X-ray data, revisited the old data, and compared X-ray
with optical data, including when simultaneous. We found that the behaviour in
X-rays cannot be explained in terms of a perfect clock because the amplitude
and shape of its variations change with time. For example, zeta Puppis was much
more strongly variable between 2007 and 2011 than before and after this
interval. Comparing the X-ray spectra of the star at maximum and minimum
brightness yields no compelling difference beyond the overall flux change: the
temperatures, absorptions, and line shapes seem to remain constant, well within
errors. The only common feature between X-ray datasets is that the variation
amplitudes appear maximum in the medium (0.6-1.2keV) energy band. Finally, no
clear and coherent correlation can be found between simultaneous X-ray and
optical data. Only a subgroup of observations may be combined coherently with
the optical period of 1.78d, although the simultaneous optical behaviour is
unknown. The currently available data do not reveal any obvious, permanent, and
direct correlation between X-ray and optical variations. The origin of the
X-ray variability therefore still needs to be ascertained, highlighting the
need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.Comment: accepted for publication by A&
FUSE Observations of a Full Orbit of Hercules X-1: Signatures of Disk, Star, and Wind
We observed an entire 1.7 day orbit of the X-ray binary Hercules X-1 with the
Far Ultraviolet Spectroscopic Explorer (FUSE). Changes in the O VI 1032,1037
line profiles through eclipse ingress and egress indicate a Keplerian accretion
disk spinning prograde with the orbit. These observations may show the first
double-peaked accretion disk line profile to be seen in the Hercules X-1
system. Doppler tomograms of the emission lines show a bright spot offset from
the Roche lobe of the companion star HZ Her, but no obvious signs of the
accretion disk. Simulations show that the bright spot is too far offset from
the Roche lobe to result from uneven X-ray heating of its surface. The absence
of disk signatures in the tomogram can be reproduced in simulations which
include absorption from a stellar wind. We attempt to diagnose the state of the
emitting gas from the C III 977, C III 1175, and N III 991 emission lines. The
latter may be enhanced through Bowen fluorescence.Comment: Accepted for publication in The Astrophysical Journa
Flame retardant spandex type polyurethanes
Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned
Flame resistant elastomeric polymer development
Elastomeric products were developed for use in the space shuttle program, and investigations were conducted to improve the properties of elastomers developed in previous programs, and to evaluate the possibility of using lower-cost general purpose polymers. Products were fabricated and processed on conventional processing equipment; these products include: foams based on fluorinated rubber flame-retarded compounds with a density of 20-30 pounds/cubic foot for use as padding and in helmets; foams based on urethane for use in instrument packaging in the space shuttle; flexible and semi-rigid films of fluorinated rubber and neoprene compounds that would not burn in a 70% nitrogen, 30% oxygen atmosphere, and in a 30% nitrogen, 70% oxygen atmosphere, respectively for use in packaging or in laminates; coated fabrics which used both nylon and Kelvar fabric substrates, coated with either fluorinated or neoprene polymer compositions to meet specific levels of flame retardancy; and other flame-resistant materials
Recommended from our members
Development of an Integrated Governance Strategy for the Voluntary and Community Sector
This report on governance provides a framework for thinking about how policy makers, funders,regulators and advisers can all work with Board members and staff to enhance the effectiveness of nonprofit organisations. It was commissioned by the Active Community Unit (ACU) of the Home Office, in parallel with other reviews designed to improve the capacity of the voluntary and community sector, at a time when the sector plays an increasingly important role in the delivery of services using public funds. That role has recently been investigated in two Government reports, the Cross Cutting Review carried out by the Treasury, and the Strategy Unit review of charities and nonprofits. Our report proposes actions of three types: some that can be taken immediately, some that require further discussion with key interests, and some integration with the other ACU reviews. Taken together they provide the starting point for an evolving strategy to improve governance across the sector. We recommend ACU chairs a group charged with the responsibility for planning and implementing this. Our focus is on governance as 'the systems and processes concerned with ensuring the overall direction, supervision and accountability of an organisation'. This is often taken to mean the way that a Board, management committee or other governing body steers the overall development of an organisation, where day-to-day management is in the hands of staff or volunteers. Sometimes, of course, the committee and volunteers are the same. They – like all governing bodies – have to balance the interests of the organisation and those they are trying to serve, while being conscious of financial and legal responsibilities, and the requirements of funders and other supporters
The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches
Brain metastasis is a significant clinical problem, yet the mechanisms governing tumor cell extravasation across the blood-brain barrier (BBB) and CNS colonization are unclear. Astrocytes are increasingly implicated in the pathogenesis of brain metastasis but in vitro work suggests both tumoricidal and tumor-promoting roles for astrocyte-derived molecules. Also, the involvement of astrogliosis in primary brain tumor progression is under much investigation. However, translation of in vitro findings into in vivo and clinical settings has not been realized. Increasingly sophisticated resources, such as transgenic models and imaging technologies aimed at astrocyte-specific markers, will enable better characterization of astrocyte function in CNS tumors. Techniques such as bioluminescence and in vivo fluorescent cell labeling have potential for understanding the real-time responses of astrocytes to tumor burden. Transgenic models targeting signaling pathways involved in the astrocytic response also hold great promise, allowing translation of in vitro mechanistic findings into pre-clinical models. The challenging nature of in vivo CNS work has slowed progress in this area. Nonetheless, there has been a surge of interest in generating pre-clinical models, yielding insights into cell extravasation across the BBB, as well as immune cell recruitment to the parenchyma. While the function of astrocytes in the tumor microenvironment is still unknown, the relationship between astrogliosis and tumor growth is evident. Here, we review the role of astrogliosis in both primary and secondary brain tumors and outline the potential for the use of novel imaging modalities in research and clinical settings. These imaging approaches have the potential to enhance our understanding of the local host response to tumor progression in the brain, as well as providing new, more sensitive diagnostic imaging methods
Automotive Stirling engine development program
The major accomplishments were the completion of the Basic Stirling Engine (BSE) and the Stirling Engine System (SES) designs on schedule, the approval and acceptance of those designs by NASA, and the initiation of manufacture of BSE components. The performance predictions indicate the Mod II engine design will meet or exceed the original program goals of 30% improvement in fuel economy over a conventional Internal Combustion (IC) powered vehicle, while providing acceptable emissions. This was accomplished while simultaneously reducing Mod II engine weight to a level comparable with IC engine power density, and packaging the Mod II in a 1985 Celebrity with no external sheet metal changes. The projected mileage of the Mod II Celebrity for the combined urban and highway CVS cycle is 40.9 mpg which is a 32% improvement over the IC Celebrity. If additional potential improvements are verified and incorporated in the Mod II, the mileage could increase to 42.7 mpg
- …
