2,954 research outputs found

    Identification of Transmitting Antennas in Secure Internet of Things Networks

    Get PDF
    Bluetooth and WIFI channels are open to public users and have few security procedures. One security aspect is for a receiver to be able to verify the identity of the transmitter. This paper describes methods of identifying transmitters by the properties of their antennas

    Use of extended and prepared reference objects in experimental Fourier transform X-ray holography

    Full text link
    The use of one or more gold nanoballs as reference objects for Fourier Transform holography (FTH) is analysed using experimental soft X-ray diffraction from objects consisting of separated clusters of these balls. The holograms are deconvoluted against ball reference objects to invert to images, in combination with a Wiener filter to control noise. A resolution of ~30nm, smaller than one ball, is obtained even if a large cluster of balls is used as the reference, giving the best resolution yet obtained by X-ray FTH. Methods of dealing with missing data due to a beamstop are discussed. Practical prepared objects which satisfy the FTH condition are suggested, and methods of forming them described.Comment: 7 pages, 2 figures, submitted to Applied Physics Letter

    Phasing diffuse scattering. Application of the SIR2002 algorithm to the non-crystallographic phase problem

    Full text link
    A new phasing algorithm has been used to determine the phases of diffuse elastic X-ray scattering from a non-periodic array of gold balls of 50 nm diameter. Two-dimensional real-space images, showing the charge-density distribution of the balls, have been reconstructed at 50 nm resolution from transmission diffraction patterns recorded at 550 eV energy. The reconstructed image fits well with scanning electron microscope (SEM) image of the same sample. The algorithm, which uses only the density modification portion of the SIR2002 program, is compared with the results obtained via the Gerchberg-Saxton-Fienup HIO algorithm. In this way the relationship between density modification in crystallography and the HiO algorithm used in signal and image processing is elucidated.Comment: 7 pages, 12 figure

    SPEDEN: Reconstructing single particles from their diffraction patterns

    Full text link
    Speden is a computer program that reconstructs the electron density of single particles from their x-ray diffraction patterns, using a single-particle adaptation of the Holographic Method in crystallography. (Szoke, A., Szoke, H., and Somoza, J.R., 1997. Acta Cryst. A53, 291-313.) The method, like its parent, is unique that it does not rely on ``back'' transformation from the diffraction pattern into real space and on interpolation within measured data. It is designed to deal successfully with sparse, irregular, incomplete and noisy data. It is also designed to use prior information for ensuring sensible results and for reliable convergence. This article describes the theoretical basis for the reconstruction algorithm, its implementation and quantitative results of tests on synthetic and experimentally obtained data. The program could be used for determining the structure of radiation tolerant samples and, eventually, of large biological molecular structures without the need for crystallization.Comment: 12 pages, 10 figure

    Fermi Surface Nesting and the Origin of the Charge Density Wave in NbSe2_2

    Full text link
    We use highly accurate density functional calculations to study the band structure and Fermi surfaces of NbSe2. We calculate the real part of the non-interacting susceptibility, Re chi_0(q), which is the relevant quantity for a charge density wave (CDW) instability and the imaginary part, Im chi_0(q), which directly shows Fermi surface (FS) nesting. We show that there are very weak peaks in Re chi_0(q) near the CDW wave vector, but that no such peaks are visible in Im chi_0(q), definitively eliminating FS nesting as a factor in CDW formation. Because the peak in Re chi_0(q) is broad and shallow, it is unlikely to be the direct cause of the CDW instability. We briefly address the possibility that electron-electron interactions (local field effects) produce additional structure in the total (renormalized) susceptibility, and we discuss the role of electron-ion matrix elements.Comment: Replacement of Table II values, minor changes to tex

    Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging

    Get PDF
    The Fourier inversion of phased coherent diffraction patterns offers images without the resolution and depth-of-focus limitations of lens-based tomographic systems. We report on our recent experimental images inverted using recent developments in phase retrieval algorithms, and summarize efforts that led to these accomplishments. These include ab-initio reconstruction of a two-dimensional test pattern, infinite depth of focus image of a thick object, and its high-resolution (~10 nm resolution) three-dimensional image. Developments on the structural imaging of low density aerogel samples are discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa

    Desalination using renewable energy sources on the arid islands of South Aegean Sea

    Get PDF
    Water and energy supply are strongly interrelated and their efficient management is crucial for a sustainable future. Water and energy systems on several Greek islands face a number of pressing issues. Water supply is problematic as regards both to the water quality and quantity. There is significant lack of water on several islands and this is mainly dealt with tanker vessels which transport vast amounts of water from the mainland. At the same time island energy systems are congested and rely predominanty on fossil fuels, despite the abundant renewable energy potential. These issues may be addressed by combining desalination and renewable energy technologies. It is essential to analyse the feasibility of this possibility. This study focuses on developing a tool capable of designing and optimally sizing desalination and renewable energy units. Several parameters regarding an island's water demandand the desalination's energy requirements are taken into account as well as input data which concern technological performance, resource availability and economic data. The tool is applied on three islands in the South Aegean Sea, Patmos (large), Lipsoi (medium) ad Thirasia (small). Results of the modelling exercise show that the water selling price ranges from 1.45 euro/m^3 for the large island, while the corresponding value is about 2.6 euro/m^3 for the small island, figures significantly lower than the current water cost (7-9 euro/m^3)

    Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region

    Get PDF
    We report on the first mesoscale combined ionospheric and thermospheric observations, partly in the vicinity of an auroral arc, from Svalbard in the polar cap on 2 February 2010. The EISCAT Svalbard radar employed a novel scanning mode in order to obtain F and E region ion flows over an annular region centered on the radar. Simultaneously, a colocated Scanning Doppler Imager observed the E region neutral winds and temperatures around 110 km altitude using the 557.7 nm auroral optical emission. Combining the ion and neutral data permits the E region Joule heating to be estimated with an azimuthal spatial resolution of ∼64 km at a radius of ∼163 km from the radar. The spatial distribution of Joule heating shows significant mesoscale variation. The ion-neutral collision frequency is measured in the E region by combining all the data over the entire field of view with only weak aurora present. The estimated ion-neutral collision frequency at ∼113 km altitude is in good agreement with the MSIS atmospheric model

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference

    Dose, exposure time, and resolution in Serial X-ray Crystallography

    Full text link
    The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate counting time and the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 0.7 nm should be possible with short exposures.Comment: 19 pages, 7 figures, 1 tabl
    corecore