4,747 research outputs found
Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence II: Numerical Solution
This paper presents the numerical verification of an asymptotic analytical
solution for the nonlinear interaction between counterpropagating Alfven waves,
the fundamental building block of astrophysical plasma turbulence. The
analytical solution, derived in the weak turbulence limit using the equations
of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an
Alfven wave collision. The agreement between these methods signifies that the
incompressible solution satisfactorily describes the essential dynamics of the
nonlinear energy transfer, even under the weakly collisional plasma conditions
relevant to many astrophysical environments.Comment: 10 pages, 6 figures, accepted to Physics of Plasma
Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind
The proton temperature anisotropy in the solar wind is known to be
constrained by the theoretical thresholds for pressure anisotropy-driven
instabilities. Here we use approximately 1 million independent measurements of
gyroscale magnetic fluctuations in the solar wind to show for the first time
that these fluctuations are enhanced along the temperature anisotropy
thresholds of the mirror, proton oblique firehose, and ion cyclotron
instabilities. In addition, the measured magnetic compressibility is enhanced
at high plasma beta () along the mirror instability
threshold but small elsewhere, consistent with expectations of the mirror mode.
The power in this frequency (the 'dissipation') range is often considered to be
driven by the solar wind turbulent cascade, an interpretation which should be
qualified in light of the present results. In particular, we show that the
short wavelength magnetic fluctuation power is a strong function of
collisionality, which relaxes the temperature anisotropy away from the
instability conditions and reduces correspondingly the fluctuation power.Comment: 4 pages, 4 figure
Analytical model for determining spacecraft impact velocity and orientation relative to an impact surface
Development of analytical model for determining spacecraft impact velocity and orientation relative to impact surface for variable dynamic condition
Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence
Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are
analyzed in the first gyrokinetic simulation spanning all scales from the tail
of the MHD range to the electron gyroradius scale. For typical solar wind
parameters at 1 AU, about 30% of the nonlinear energy transfer close to the
electron gyroradius scale is mediated by modes in the tail of the MHD cascade.
Collisional dissipation occurs across the entire kinetic range
. Both mechanisms thus act on multiple coupled scales,
which have to be retained for a comprehensive picture of the dissipation range
in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee
Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence
Kinetic plasma theory is used to generate synthetic spacecraft data to
analyze and interpret the compressible fluctuations in the inertial range of
solar wind turbulence. The kinetic counterparts of the three familiar linear
MHD wave modes---the fast, Alfven, and slow waves---are identified and the
properties of the density-parallel magnetic field correlation for these kinetic
wave modes is presented. The construction of synthetic spacecraft data, based
on the quasi-linear premise---that some characteristics of magnetized plasma
turbulence can be usefully modeled as a collection of randomly phased, linear
wave modes---is described in detail. Theoretical predictions of the
density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell
linear eigenfunctions are presented and compared to the observational
determination of this correlation based on 10 years of Wind spacecraft data. It
is demonstrated that MHD theory is inadequate to describe the compressible
turbulent fluctuations and that the observed density-parallel magnetic field
correlation is consistent with a statistically negligible kinetic fast wave
energy contribution for the large sample used in this study. A model of the
solar wind inertial range fluctuations is proposed comprised of a mixture of a
critically balanced distribution of incompressible Alfvenic fluctuations and a
critically balanced or more anisotropic than critical balance distribution of
compressible slow wave fluctuations. These results imply that there is little
or no transfer of large scale turbulent energy through the inertial range down
to whistler waves at small scales.Comment: Accepted to Astrophysical Journal. 28 pages, 7 figure
Polarized Neutron Matter: A Lowest Order Constrained Variational Approach
In this paper, we calculate some of the polarized neutron matter properties,
using the lowest order constrained variational method with the
potential and employing a microscopic point of view. A comparison is also made
between our results and those of other many-body techniques.Comment: 23 pages, 8 figure
Resident perception of volcanic hazards and evacuation procedures
Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP), in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in this region. Our data can be used as a baseline by the ICP for more detailed studies in Iceland's volcanic regions
- …
