4,968 research outputs found
The Military Career of James Gettys
James Gettys was a Federalist, tried and true. From his role in the American Revolution to his final position as Vice Brigadier General during the War of 1812, James understood the necessity for “we the people” to remain united as one, power in numbers. He lived that way, worked that way, and built his town on that premise. Like most of the frontiersmen of his time, his life was difficult, and his rise to the top was not always met with valor. Much like his father, Samuel, James Gettys fought for everything he had, and his attainments were well earned. Until recently, discussion of James Gettys’ military career began with his 1781 role as a Cornet in a Light Horsemen of York County. While any role in the Revolutionary War was beneficial, his appeared fairly insignificant, as a Cornet was a lower ranked officer, and Gettys’ unit was never activated.1 Seemingly odd given his numerous promotions within the militia, James appeared to witness the fighting safely on the sidelines. New research, however, reveals, that this version of events is not entirely accurate. This article reviews that new evidence and narrates the postwar Revolutionary War life of Gettysburg’s founding father
Variable stream control engine concept for advanced supersonic aircraft: Features and benefits
The Variable Stream Control Engine is studied for advanced supersonic cruise aircraft. Significant environmental and performance improvements relative to first generation supersonic turbojet engines are cited. Two separate flow streams, each with independent burner and nozzle systems are incorporated within the engine. By unique control of the exhaust temperatures and velocities in two coannular streams, significant reduction in jet noise is obtained
VSCE technology definition study
Refined design definition of the variable stream control engine (VSCE) concept for advanced supersonic transports is presented. Operating and performance features of the VSCE are discussed, including the engine components, thrust specific fuel consumption, weight, noise, and emission system. A preliminary engine design is presented
Prediction of light aircraft interior noise
A computerized interior noise prediction method for light aircraft is described. An existing analytical program, development for commercial jets, forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption
A study of helicopter interior noise reduction
The interior noise levels of existing helicopters are discussed along with an ongoing experimental program directed towards reducing these levels. Results of several noise and vibration measurements on Langley Research Center's Civil Helicopter Research Aircraft are presented, including measurements taken before and after installation of an acoustically-treated cabin. The predominant noise source in this helicopter is the first stage planetary gear-clash in the main gear box, both before and after installation of the acoustically treated cabin. Noise reductions of up to 20 db in some octave bands may be required in order to obtain interior noise levels comparable to commercial jet transports
Best causal mathematical models for a nonlinear system
©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.We provide new causal mathematical models of a nonlinear system S which are specifications of a nonlinear operator P/sub p/ of degree p=1,2,.... The operator P/sub p/ is determined from a special orthogonalization procedure and minimization of the mean squared difference between outputs of S and P/sub p/. As a result, these models have smallest possible associated errors in the class of such operators P/sub p/. The causality condition is implemented through the use of specific matrices called lower trapezoidal. The associated computational work is reduced by the use of the orthogonalization procedure. We provide a strict justification of the proposed approach including theorems on an explicit representatoin of the models' parameters, and theorems on the associated error representation. The possible extensions of the proposed approach and its potential applications are outlined.Anatoli Torokhti, Phil Howlett, and Charles Pearc
A philosophy for the modelling of realistic nonlinear systems
First published in Proceedings of the American Mathematical Society in volume 132, number 2, by the American Mathematical Society Copyright © 2003 American Mathematical SocietyA nonlinear dynamical system is modelled as a nonlinear mapping from a set of input signals into a corresponding set of output signals. Each signal is specified by a set of real number parameters, but such sets may be uncountably infinite. For numerical simulation of the system each signal must be represented by a finite parameter set and the mapping must be defined by a finite arithmetical process. Nevertheless the numerical simulation should be a good approximation to the mathematical model. We discuss the representation of realistic dynamical systems and establish a stable approximation theorem for numerical simulation of such systems.Phil Howlett, Anatoli Torokhti, Charles Pearc
Advanced supersonic propulsion study, phase 3
The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines
Supply of Policy and Management Consultancies to Canadian Federal Departments: New Evidence on Contract Size, Type and Structure
10.2139/ssrn.22484021-3
- …
