1,301 research outputs found

    Optically pure heterobimetallic helicates from self-assembly and click strategies

    Get PDF
    Single diastereomer, diamagnetic, octahedral Fe(II) tris chelate complexes are synthesised that contain three pendant pyridine proligands pre-organised for coordination to a second metal. They bind Cu(I) and Ag(I) with coordination geometry depending on the identity of the metal and the detail of the ligand structure, but for example homohelical (ΔFe,ΔCu) configured systems with unusual trigonal planar Cu cations are formed exclusively in solution as shown by VT-NMR and supported by DFT calculations. Similar heterobimetallic tris(triazole) complexes are synthesised via clean CuAAC reactions at a tris(alkynyl) complex, although here the configurations of the two metals differ (ΔFe,ΛCu), leading to the first optically pure heterohelicates. A second series of Fe complexes perform less well in either strategy as a result of lack of preorganisation

    Asymmetric triplex metallohelices with high and selective activity against cancer cells

    Get PDF
    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and ​p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 ​p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli. At a glanc

    Uist Lagoons Survey

    Get PDF
    Scotland has around a hundred saline lagoons, coastal lochs that are not quite as saline as the sea. A small number of organisms are confined to these lochs, but most of these are very small and belong to groups that are difficult to identify. A consortium of specialists in identification at the National Museum of Scotland and ecologists sampled most of the saline lagoons on designated sites (SSSI and SAC) in the Uists, the area believed to have the best biodiversity of lagoon organisms in Scotland. The study not only confirmed the presence of these specialist species, but also that they were more widely distributed in the Uists than had been believed. Samples of the organisms have been placed in the permanent collections of the National Museum of Scotland and (for plants) in the Royal Botanic Gardens Edinburgh, where they will be available for future study

    Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings

    Get PDF
    Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot‐and‐mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple‐to‐use technologies, including molecular‐based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)‐specific reverse transcription loop‐mediated isothermal amplification (RT‐LAMP) and real‐time RT‐PCR (rRT‐PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory‐based rRT‐PCR. However, the lack of robust ‘ready‐to‐use kits’ that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT‐PCR and RT‐LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real‐time, and for the RT‐LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV

    Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA

    Get PDF
    The design and synthesis of metal complexes that can specifically target DNA secondary structure has attracted considerable attention. Chiral metallosupramolecular complexes (e.g. helicates) in particular display unique DNA-binding behavior, however until recently few examples which are both water-compatible and enantiomerically pure have been reported. Herein we report that one metallohelix enantiomer , available from a diastereoselective synthesis with no need for resolution, can enantioselectively stabilize human telomeric hybrid G-quadruplex and strongly inhibit telomerase activity with IC 50 of 600 nM. In contrast, no such a preference is observed for the mirror image complex . More intriguingly, neither of the two enantiomers binds specifically to human telomeric antiparallel G-quadruplex. To the best of our knowledge, this is the first example of one pair of enantiomers with contrasting selectivity for human telomeric hybrid G-quadruplex. Further studies show that can discriminate human telomeric G-quadruplex from other telomeric G-quadruplexes

    Regulation and Control of the Public Accounting Profession in Canada

    Get PDF
    https://egrove.olemiss.edu/aicpa_assoc/2826/thumbnail.jp

    The three-dimensional Anderson model of localization with binary random potential

    Full text link
    We study the three-dimensional two-band Anderson model of localization and compare our results to experimental results for amorphous metallic alloys (AMA). Using the transfer-matrix method, we identify and characterize the metal-insulator transitions as functions of Fermi level position, band broadening due to disorder and concentration of alloy composition. The appropriate phase diagrams of regions of extended and localized electronic states are studied and qualitative agreement with AMA such as Ti-Ni and Ti-Cu metallic glasses is found. We estimate the critical exponents nu_W, nu_E and nu_x when either disorder W, energy E or concentration x is varied, respectively. All our results are compatible with the universal value nu ~ 1.6 obtained in the single-band Anderson model.Comment: 9 RevTeX4 pages with 11 .eps figures included, submitted to PR

    The Archaeology of 19th-Century Health and Hygiene at the Sullivan Street Site, New York City

    Get PDF
    The households represented by archaeological remains at the Sullivan Street site in Greenwich Village are used to explore issues related to health care in 19th-century New York City. Backyard features and domestic artifact assemblages are discussed in the context of institutional development and specific changes in medical practice. Consumer choices are seen as responses to differential access to sanitation, medical care, and information. Social class had a significant effect on both the infrastructure and material culture of health and hygiene for these households

    Direct detection and characterization of foot-and-mouth disease virus in East Africa using a field-ready real-time PCR platform

    Get PDF
    Effective control and monitoring of foot-and-mouth disease (FMD) relies upon rapid and accurate disease confirmation. Currently, clinical samples are usually tested in reference laboratories using standardized assays recommended by The World Organisation for Animal Health (OIE). However, the requirements for prompt and serotype-specific diagnosis during FMD outbreaks, and the need to establish robust laboratory testing capacity in FMD-endemic countries have motivated the development of simple diagnostic platforms to support local decision-making. Using a portable thermocycler, the T-COR™ 8, this study describes the laboratory and field evaluation of a commercially available, lyophilized pan-serotype-specific real-time RT-PCR (rRT-PCR) assay and a newly available FMD virus (FMDV) typing assay (East Africa-specific for serotypes: O, A, Southern African Territories [SAT] 1 and 2). Analytical sensitivity, diagnostic sensitivity and specificity of the pan-serotype-specific lyophilized assay were comparable to that of an OIE-recommended laboratory-based rRT-PCR (determined using a panel of 57 FMDV-positive samples and six non-FMDV vesicular disease samples for differential diagnosis). The FMDV-typing assay was able to correctly identify the serotype of 33/36 FMDV-positive samples (no cross-reactivity between serotypes was evident). Furthermore, the assays were able to accurately detect and type FMDV RNA in multiple sample types, including epithelial tissue suspensions, serum, oesophageal–pharyngeal (OP) fluid and oral swabs, both with and without the use of nucleic acid extraction. When deployed in laboratory and field settings in Tanzania, Kenya and Ethiopia, both assays reliably detected and serotyped FMDV RNA in samples (n = 144) collected from pre-clinical, clinical and clinically recovered cattle. These data support the use of field-ready rRT-PCR platforms in endemic settings for simple, highly sensitive and rapid detection and/or characterization of FMDV
    corecore