5 research outputs found
Effect of experimentally induced trichinellosis on the infection with Erysipelothrix rhusiopathiae in rats
Disrupted superior collicular activity may reveal cervical dystonia disease pathomechanisms
Abstract Cervical dystonia is a common neurological movement disorder characterised by muscle contractions causing abnormal movements and postures affecting the head and neck. The neural networks underpinning this condition are incompletely understood. While animal models suggest a role for the superior colliculus in its pathophysiology, this link has yet to be established in humans. The present experiment was designed to test the hypothesis that disrupted superior collicular processing is evident in affected patients and in relatives harbouring a disease-specific endophenotype (abnormal temporal discrimination). The study participants were 16 cervical dystonia patients, 16 unaffected first-degree relatives with abnormal temporal discrimination, 16 unaffected first-degree relatives with normal temporal discrimination and 16 healthy controls. The response of participant’s superior colliculi to looming stimuli was assessed by functional magnetic resonance imaging. Cervical dystonia patients and relatives with abnormal temporal discrimination demonstrated (i) significantly reduced superior collicular activation for whole brain and region of interest analysis; (ii) a statistically significant negative correlation between temporal discrimination threshold and superior collicular peak values. Our results support the hypothesis that disrupted superior collicular processing is involved in the pathogenesis of cervical dystonia. These findings, which align with animal models of cervical dystonia, shed new light on pathomechanisms in humans
Herbal medicine for sports: a review
The use of herbal medicinal products and supplements has increased
during last decades. At present, some herbs are used to enhance muscle strength and body mass. Emergent evidence suggests that the health benefits from plants are attributed to their bioactive compounds such as Polyphenols, Terpenoids, and Alkaloids which have several physiological effects on the human body. At times, manufacturers launch numerous products with banned ingredient inside with inappropriate amounts or fake supplement inducing harmful side effect. Unfortunately up to date, there is no guarantee that herbal supplements are safe for anyone to use and it has not helped to clear the confusion surrounding the herbal use in sport field especially. Hence, the purpose of this review is to provide guidance on the efficacy and side effect of most used plants in sport. We have identified plants according to the following categories: Ginseng, alkaloids, and other purported herbal ergogenics such asTribulus Terrestris, Cordyceps Sinensis. We found that most herbal supplement effects are likely due to activation of the central nervous system via stimulation of catecholamines. Ginseng was used as an endurance performance enhancer, while alkaloids supplementation resulted in improvements in sprint and cycling intense exercises. Despite it is prohibited, small amount of ephedrine was usually used in combination with caffeine to enhance muscle strength in trained individuals. Some other alkaloids such as green tea extracts have been used to improve body mass and composition in athletes. Other herb (i.e. Rhodiola, Astragalus) help relieve muscle and joint pain, but results about their effects on exercise performance are missing
