50 research outputs found

    Biophotonics Modalities for High-Resolution Imaging of Microcirculatory Tissue Beds Using Endogenous Contrast: A Review on Present Scenario and Prospects

    Get PDF
    The microcirculation is a complex system, and the visualization of microcirculation has great significance in improving our understanding of pathophysiological processes in various disease conditions, in both clinical and fundamental studies. A range of techniques are available or emerging for investigating different aspect of the microcirculation in animals and humans. This paper reviews the recent developments in the field of high-resolution and high-sensitive optical imaging of microcirculatory tissue beds, emphasizing technologies that utilize the endogenous contrast mechanism. Optical imaging techniques such as intravital microscopy, Capillaroscopy, laser Doppler perfusion imaging, laser speckle perfusion imaging, polarization spectroscopy, photo-acoustic tomography, and various implementations of optical coherence tomography based on Doppler and speckle contrast imaging are presented together with their prospectives and challenges

    Review Article Biophotonics Modalities for High-Resolution Imaging of Microcirculatory Tissue Beds Using Endogenous Contrast: A Review on Present Scenario and Prospects

    Get PDF
    The microcirculation is a complex system, and the visualization of microcirculation has great significance in improving our understanding of pathophysiological processes in various disease conditions, in both clinical and fundamental studies. A range of techniques are available or emerging for investigating different aspect of the microcirculation in animals and humans. This paper reviews the recent developments in the field of high-resolution and high-sensitive optical imaging of microcirculatory tissue beds, emphasizing technologies that utilize the endogenous contrast mechanism. Optical imaging techniques such as intravital microscopy, Capillaroscopy, laser Doppler perfusion imaging, laser speckle perfusion imaging, polarization spectroscopy, photoacoustic tomography, and various implementations of optical coherence tomography based on Doppler and speckle contrast imaging are presented together with their prospectives and challenges

    Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography

    Get PDF
    Journal articleMicrocirculation imaging is a key parameter for studying the pathophysiological processes of various disease conditions, in both clinical and fundamental research. A full-range spectral-domain correlation mapping optical coherence tomography (cm-OCT) method to obtain a complex-conjugate-free, full-range depth-resolved microcirculation map is presented. The proposed system is based on a high-speed spectrometer at 91 kHz with a modified scanning protocol to achieve higher acquisition speed to render cm-OCT images with highspeed and wide scan range. The mirror image elimination is based on linear phase modulation of B-frames by introducing a slight off-set of the probe beam with respect to the lateral scanning fast mirror\u27s pivot axis. An algorithm that exploits the Hilbert transform to obtain a complex-conjugate-free image in conjunction with the cm-OCT algorithm is used to obtain full-range imaging of microcirculation within tissue beds in vivo. The estimated sensitivity of the system was around 105 dB near the zero-delay line with similar to 20 dB roll-off from +/-0.5 to +/-3 mm imaging-depth position. The estimated axial and lateral resolutions are similar to 12 and similar to 30 mu m, respectively. A direct consequence of this complex conjugate artifact elimination is the enhanced flow imaging sensitivity for deep tissue imaging application by imaging through the most sensitive zero-delay line and doubling the imaging range. (C) The Authors.Higher Education Authority PRTLI Cycle

    Nano-sensitive optical coherence tomography

    Get PDF
    Depth resolved label-free detection of structural changes with nanoscale sensitivity is an outstanding problem in the biological and physical sciences and has significant applications in both the fundamental research and healthcare diagnostics arenas. Here we experimentally demonstrate a novel label-free depth resolved sensing technique based on optical coherence tomography (OCT) to detect structural changes at the nanoscale. Structural components of the 3D object, spectrally encoded in the remitted light, are transformed from the Fourier domain into each voxel of the 3D OCT image without compromising sensitivity. Spatial distribution of the nanoscale structural changes in the depth direction is visualized in just a single OCT scan. This label free approach provides new possibilities for depth resolved study of pathogenic and physiologically relevant molecules in the body with high sensitivity and specificity. It offers a powerful opportunity for early diagnosis and treatment of diseases. Experimental results show the ability of the approach to differentiate structural changes of 30 nm in nanosphere aggregates, located at different depths, from a single OCT scan, and structural changes less than 30 nm in time from two OCT scans. Application for visualization of the structure of human skin in vivo is also demonstrated.peer-reviewe

    Optical Microangiography: Theory and Application

    Full text link
    corecore