781 research outputs found

    Highly efficient coherent optical memory based on electromagnetically induced transparency

    Full text link
    Quantum memory is an important component in the long-distance quantum communication system based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0(1.5)\% for a coherent optical memory based on the electromagnetically induced transparency (EIT) scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50\%. Both are the best record to date in all kinds of the schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.Comment: 5 pages, 5 figures, supplementary materials: 12 pages, 4 figure

    Quantum storage and manipulation of heralded single photons in atomic quantum memories

    Full text link
    We demonstrate the storage and manipulation of narrowband heralded single photons from a cavity-enhanced spontaneous parametric downconversion (SPDC) source in the atomic quantum memory based on electromagnetically induced transparency. We show that nonclassical correlations are preserved between the heralding and the retrieved photons after storage process. By varying the intensity of the coupling field during retrieval process, we further demonstrate that the waveform or bandwidth of the single photons can be manipulated and the nonclassical correlation between the photon pairs can be even enhanced. Unlike previous works, our SPDC source is single mode in frequency, which not only reduces the experimental complexity arising from external filtering but also increases the useful photon generation rate. Our results can be scaled up with ease and thus lay the foundation for future realization of large-scale applications in quantum information processing

    Anti-Neuroinflammatory Effects of the Calcium Channel Blocker Nicardipine on Microglial Cells: Implications for Neuroprotection

    Get PDF
    Background/Objective Nicardipine is a calcium channel blocker that has been widely used to control blood pressure in severe hypertension following events such as ischemic stroke, traumatic brain injury, and intracerebral hemorrhage. However, accumulating evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play important roles in neurodegeneration, and the effect of nicardipine on microglial activation remains unresolved. Methodology/Principal Findings In the present study, using murine BV-2 microglia, we demonstrated that nicardipine significantly inhibits microglia-related neuroinflammatory responses. Treatment with nicardipine inhibited microglial cell migration. Nicardipine also significantly inhibited LPS plus IFN-γ-induced release of nitric oxide (NO), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, nicardipine also inhibited microglial activation by peptidoglycan, the major component of the Gram-positive bacterium cell wall. Notably, nicardipine also showed significant anti-neuroinflammatory effects on microglial activation in mice in vivo. Conclusion/Significance The present study is the first to report a novel inhibitory role of nicardipine on neuroinflammation and provides a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases

    Angiotensin-Converting Enzyme Genotype and Peripheral Arterial Disease in Diabetic Patients

    Get PDF
    We investigated the effect of traditional risk factors (hypertension, dyslipidemia and smoking) on the association between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and peripheral arterial disease (PAD) in 945 (454 men and 491 women) Taiwanese type 2 diabetic patients with a mean age of 63.5 (SD: 11.4) years. Among them, 81 (31 men and 50 women) had PAD (ankle-brachial index <0.9). The adjusted odds ratios (95% confidence intervals) were 2.48 (1.18–5.21), 1.69 (1.00–2.85) and 1.64 (1.12–2.39), respectively, for recessive (DD versus II + ID), dominant (DD + ID versus II) and additive (II = 0, ID = 1 and DD = 2) models. While analyzing the interaction between DD and the individual risk factor of hypertension, smoking and dyslipidemia, patients with the risk factor and with DD had the highest risk compared to referent patients without the risk factor and with II/ID. The respective adjusted odds ratios were 5.41 (2.05–14.31), 7.38 (1.87–29.06) and 4.64 (1.70–12.64). We did not find a significant interaction between DD and any of the risk factors under multiplicative or additive scale. In conclusion, traditional risk factors (hypertension, smoking and dyslipidemia) play an important role in the association between ACE genotypes and PAD. Patients with DD genotype and traditional risk factors are at the highest risk
    corecore