14,571 research outputs found
Evaluation of aerothermal modeling computer programs
Various computer programs based upon the SIMPLE or SIMPLER algorithm were studied and compared for numerical accuracy, efficiency, and grid dependency. Four two-dimensional and one three-dimensional code originally developed by a number of research groups were considered. In general, the accuracy and computational efficieny of these TEACH type programs were improved by modifying the differencing schemes and their solvers. A brief description of each program is given. Error reduction, spline flux and second upwind differencing programs are covered
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout
As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
Recommended from our members
Compressed Statistical Testing and Application to Radar
We present compressed statistical testing (CST) with an illustrative application to radar target detection. We characterize an optimality condition for a compressed domain test to yield the same result as the corresponding test in the uncompressed domain. We demonstrate by simulation that under high SNR, a likelihood ratio test with compressed samples at 3.3x or even higher compression ratio can achieve detection performance comparable to that with uncompressed data. For example, our compressed domain Sample Matrix Inversion test for radar target detection can achieve constant false alarm rate (CFAR) performance similar to the corresponding test in the raw data domain. By exploiting signal sparsity in the target and interference returns, compressive sensing based CST can incur a much lower processing cost in statistical training and decision making, and can therefore enable a variety of distributed applications such as target detection on resource limited mobile devices.Engineering and Applied Science
Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films
We report on the growth and characterization of ferromagnetic Gd-doped EuO
thin films. We prepared samples with Gd concentrations up to 11% by means of
molecular beam epitaxy under distillation conditions, which allows a very
precise control of the doping concentration and oxygen stoichiometry. Using
soft x-ray magnetic circular dichroism at the Eu and Gd M4,5 edges, we found
that the Curie temperature ranged from 69 K for pure stoichiometric EuO to
about 170 K for the film with the optimal Gd doping of around 4%. We also show
that the Gd magnetic moment couples ferromagnetically to that of Eu.Comment: 4 pages, 4 figure
The Ultraluminous X-ray Sources near the Center of M82
We report the identification of a recurrent ultraluminous X-ray source (ULX),
a highly absorbed X-ray source (possibly a background AGN), and a young
supernova remnant near the center of the starburst galaxy M82. From a series of
Chandra observations taken from 1999 to 2005, we found that the transient ULX
first appeared in 1999 October. The source turned off in 2000 January, but
later reappeared and has been active since then. The X-ray luminosity of this
source varies from below the detection level (~2.5e38 erg/s) to its active
state in between ~7e39 erg/s and 1.3e40 erg/s (in the 0.5-10 keV energy band)
and shows unusual spectral changes. The X-ray spectra of some Chandra
observations are best fitted with an absorbed power-law model with photon index
ranging from 1.3 to 1.7. These spectra are similar to those of Galactic black
hole binary candidates seen in the low/hard state except that a very hard
spectrum was seen in one of the observations. By comparing with near infrared
images taken with the Hubble Space Telescope, the ULX is found to be located
within a young star cluster. Radio imaging indicates that it is associated with
a H II region. We suggest that the ULX is likely to be a > 100 solar mass
intermediate-mass black hole in the low/hard state. In addition to the
transient ULX, we also found a highly absorbed hard X-ray source which is
likely to be an AGN and an ultraluminous X-ray emitting young supernova remnant
which may be related to a 100-year old gamma-ray burst event, within 2 arcsec
of the transient ULX.Comment: 9 pages, 8 figures. Accepted for publication in Ap
Spin blockade, orbital occupation and charge ordering in La_(1.5)Sr_(0.5)CoO4
Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the
charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and
low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade
phenomenon as a source for the extremely insulating nature of the
La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation
accounts for the large contrast in the Co-O bond lengths, and in turn, the high
charge ordering temperature. Yet, the low magnetic ordering temperature is
naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From
the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow
band material.Comment: 5 pages, 3 figure
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Subsequence clustering of multivariate time series is a useful tool for
discovering repeated patterns in temporal data. Once these patterns have been
discovered, seemingly complicated datasets can be interpreted as a temporal
sequence of only a small number of states, or clusters. For example, raw sensor
data from a fitness-tracking application can be expressed as a timeline of a
select few actions (i.e., walking, sitting, running). However, discovering
these patterns is challenging because it requires simultaneous segmentation and
clustering of the time series. Furthermore, interpreting the resulting clusters
is difficult, especially when the data is high-dimensional. Here we propose a
new method of model-based clustering, which we call Toeplitz Inverse
Covariance-based Clustering (TICC). Each cluster in the TICC method is defined
by a correlation network, or Markov random field (MRF), characterizing the
interdependencies between different observations in a typical subsequence of
that cluster. Based on this graphical representation, TICC simultaneously
segments and clusters the time series data. We solve the TICC problem through
alternating minimization, using a variation of the expectation maximization
(EM) algorithm. We derive closed-form solutions to efficiently solve the two
resulting subproblems in a scalable way, through dynamic programming and the
alternating direction method of multipliers (ADMM), respectively. We validate
our approach by comparing TICC to several state-of-the-art baselines in a
series of synthetic experiments, and we then demonstrate on an automobile
sensor dataset how TICC can be used to learn interpretable clusters in
real-world scenarios.Comment: This revised version fixes two small typos in the published versio
- …
