14,571 research outputs found

    Evaluation of aerothermal modeling computer programs

    Get PDF
    Various computer programs based upon the SIMPLE or SIMPLER algorithm were studied and compared for numerical accuracy, efficiency, and grid dependency. Four two-dimensional and one three-dimensional code originally developed by a number of research groups were considered. In general, the accuracy and computational efficieny of these TEACH type programs were improved by modifying the differencing schemes and their solvers. A brief description of each program is given. Error reduction, spline flux and second upwind differencing programs are covered

    System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    Get PDF
    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement

    Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films

    Full text link
    We report on the growth and characterization of ferromagnetic Gd-doped EuO thin films. We prepared samples with Gd concentrations up to 11% by means of molecular beam epitaxy under distillation conditions, which allows a very precise control of the doping concentration and oxygen stoichiometry. Using soft x-ray magnetic circular dichroism at the Eu and Gd M4,5 edges, we found that the Curie temperature ranged from 69 K for pure stoichiometric EuO to about 170 K for the film with the optimal Gd doping of around 4%. We also show that the Gd magnetic moment couples ferromagnetically to that of Eu.Comment: 4 pages, 4 figure

    The Ultraluminous X-ray Sources near the Center of M82

    Full text link
    We report the identification of a recurrent ultraluminous X-ray source (ULX), a highly absorbed X-ray source (possibly a background AGN), and a young supernova remnant near the center of the starburst galaxy M82. From a series of Chandra observations taken from 1999 to 2005, we found that the transient ULX first appeared in 1999 October. The source turned off in 2000 January, but later reappeared and has been active since then. The X-ray luminosity of this source varies from below the detection level (~2.5e38 erg/s) to its active state in between ~7e39 erg/s and 1.3e40 erg/s (in the 0.5-10 keV energy band) and shows unusual spectral changes. The X-ray spectra of some Chandra observations are best fitted with an absorbed power-law model with photon index ranging from 1.3 to 1.7. These spectra are similar to those of Galactic black hole binary candidates seen in the low/hard state except that a very hard spectrum was seen in one of the observations. By comparing with near infrared images taken with the Hubble Space Telescope, the ULX is found to be located within a young star cluster. Radio imaging indicates that it is associated with a H II region. We suggest that the ULX is likely to be a > 100 solar mass intermediate-mass black hole in the low/hard state. In addition to the transient ULX, we also found a highly absorbed hard X-ray source which is likely to be an AGN and an ultraluminous X-ray emitting young supernova remnant which may be related to a 100-year old gamma-ray burst event, within 2 arcsec of the transient ULX.Comment: 9 pages, 8 figures. Accepted for publication in Ap

    Spin blockade, orbital occupation and charge ordering in La_(1.5)Sr_(0.5)CoO4

    Full text link
    Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade phenomenon as a source for the extremely insulating nature of the La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation accounts for the large contrast in the Co-O bond lengths, and in turn, the high charge ordering temperature. Yet, the low magnetic ordering temperature is naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow band material.Comment: 5 pages, 3 figure

    Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    Full text link
    Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios.Comment: This revised version fixes two small typos in the published versio
    corecore