2,907 research outputs found
Prevalence of restless legs syndrome in migraine patients with and without aura: a cross-sectional, case-controlled study
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
Unraveling the Role of the rssC Gene of Serratia marcescens by Atomic Force Microscopy
100學年度研究獎補助論文[[abstract]]The product and direct role of the rssC gene of Serratia marcescens is unknown. For unraveling the role of the rssC gene, atomic force microscopy has been used to identify the surfaces of intact S. marcescens wild-type CH-1 cells and rssC mutant CH-1ΔC cells. The detailed surface topographies were directly visualized, and quantitative measurements of the physical properties of the membrane structures were provided. CH-1 and CH-1ΔC cells were observed before and after treatment with lysozyme, and their topography-related parameters, e.g., a valley-to-peak distance, mean height, surface roughness, and surface root-mean-square values, were defined and compared. The data obtained suggest that the cellular surface topography of mutant CH-1ΔC becomes rougher and more precipitous than that of wild-type CH-1 cells. Moreover, it was found that, compared with native wild-type CH-1, the cellular surface topography of lysozyme-treated CH-1 was not changed profoundly. The product of the rssC gene is thus predicted to be mainly responsible for fatty-acid biosynthesis of the S. marcescens outer membrane. This study represents the first direct observation of the structural changes in membranes of bacterial mutant cells and offers a new prospect for predicting gene expression in bacterial cells.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]GB
Mapping the unconventional orbital texture in topological crystalline insulators
The newly discovered topological crystalline insulators (TCIs) harbor a
complex band structure involving multiple Dirac cones. These materials are
potentially highly tunable by external electric field, temperature or strain
and could find future applications in field-effect transistors, photodetectors,
and nano-mechanical systems. Theoretically, it has been predicted that
different Dirac cones, offset in energy and momentum-space, might harbor vastly
different orbital character, a unique property which if experimentally
realized, would present an ideal platform for accomplishing new spintronic
devices. However, the orbital texture of the Dirac cones, which is of immense
importance in determining a variety of materials properties, still remains
elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI
PbSnSe. By using Fourier-transform (FT) scanning tunneling
spectroscopy (STS) we measure the interference patterns produced by the
scattering of surface state electrons. We discover that the intensity and
energy dependences of FTs show distinct characteristics, which can directly be
attributed to orbital effects. Our experiments reveal the complex band topology
involving two Lifshitz transitions and establish the orbital nature of the
Dirac bands in this new class of topological materials, which could provide a
different pathway towards future quantum applications
Spatiotemporal Analysis of Groundwater Recharge Trends and Variability in Northern Taiwan
In this study, the base flow estimation method was used to assess long‐term changes of groundwater recharge in Northern Taiwan. The Mann‐Kendall test was used to examine the characteristics of the trends. This was followed by trend slope calculation and change‐point analysis. The annual groundwater recharge was found to exhibit a significant upward trend for the Fushan and Hengxi stations (Tamsui river basin). On the other hand, the Ximen Bridge station (Lanyang river basin) recorded a significant downward trend. Calculations showed that the rate of change for the Fengshan and Touqian river basins was small (less than 10%). However, that for the following stations was greater than 30%: Fushan, Hengxi, Ximen Bridge, and Niudou (also in the Lanyang river basin). The results of the change‐point analysis further indicated a significant change‐point for the annual recharge at Fushan, Hengxi, and Ximen Bridge stations in 1999, 1983, and 2001, respectively. The findings can be used for regional hydrological studies and as reference for water resource planning
Kernel Formula Approach to the Universal Whitham Hierarchy
We derive the dispersionless Hirota equations of the universal Whitham
hierarchy from the kernel formula approach proposed by Carroll and Kodama.
Besides, we also verify the associativity equations in this hierarchy from the
dispersionless Hirota equations and give a realization of the associative
algebra with structure constants expressed in terms of the residue formulas.Comment: 18 page
Double trouble: Time-varying connectedness between stock and housing markets
Joint new records in the stock and housing markets are now gradually becoming a focal point of controversy in Taiwan. Based on the local heterogeneity of real estate assets, this study proposes setting up a two-market transmission mechanism between the stock and city-level housing markets to fully reply to this question. The estimation results using the Diebold-Yilmaz spillover method offer some critical information: the fact that the overheated housing market is precisely caused by the Taiwan stock market, which serves as evidence of the wealth effect. As far as the housing network is concerned, it is interesting to note that housing prices in Taipei as the source city spill out from near to far: New Taipei, Taichung and ultimately Kaohsiung. All these things make it clear that the authorities pay special attention to the status of the stock market as well as to inter-city differences in terms of housing spillovers
- …
