6,616 research outputs found
Application of Cryogenic Treatment to Extend the Life of the TiAlN-Coated Tungsten Carbide Milling Cutter
Cutting tools are important to the manufacturing industry since they will affect production efficiency and product quality. Cryogenic treatment can improve the material properties by decreasing residual stress, stabilizing dimensional accuracy, and increasing wear resistance. The purpose of this study is to investigate the feasibility and effect of cryogenic treatment on the performance of TiAlN-coated tungsten carbide milling cutters for machining the Inconel alloy 625 in terms of different testing methods (e.g., hardness, wear resistance, residual stress, microstructure, and tool life test). Experimental results indicate that after cryogenic treatment there is less wear, the microstructure is denser, residual stress is decreased, the adhesion of coating and tungsten carbide is improved, and the tool life is effectively improved
Thermodynamic curvature measures interactions
Thermodynamic fluctuation theory originated with Einstein who inverted the
relation to express the number of states in terms of entropy:
. The theory's Gaussian approximation is discussed in most
statistical mechanics texts. I review work showing how to go beyond the
Gaussian approximation by adding covariance, conservation, and consistency.
This generalization leads to a fundamentally new object: the thermodynamic
Riemannian curvature scalar , a thermodynamic invariant. I argue that
is related to the correlation length and suggest that the sign of
corresponds to whether the interparticle interactions are effectively
attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27
A facile approach to tryptophan derivatives for the total synthesis of argyrin analogues
A facile route has been established for the synthesis of indole-substituted (S)-tryptophans from corresponding indoles, which utilizes a chiral auxiliary-facilitated Strecker amino acid synthesis strategy. The chiral auxiliary reagents evaluated were (S)-methylbenzylamine
and related derivatives. To illustrate the robustness of
the method, eight optically pure (S)-tryptophan analogues were synthesized, which were subsequently used for the convergent synthesis of a potent antibacterial agent, argyrin A and its analogues
In vivo tracking of phosphoinositides in Drosophila photoreceptors.
In order to monitor phosphoinositide turnover during phospholipase C (PLC)-mediated Drosophila phototransduction, fluorescently tagged lipid probes were expressed in photoreceptors and imaged both in dissociated cells, and in eyes of intact living flies. Of six probes tested, Tb(R332H) (a mutant of the Tubby protein pleckstrin homology domain) was judged the best reporter for phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], and the P4M domain from Legionella SidM for phosphatidylinositol 4-phosphate (PtdIns4P). Using accurately calibrated illumination, we found that only ∼50% of PtdIns(4,5)P2 and very little PtdIns4P were depleted by full daylight intensities in wild-type flies, but both were severely depleted by ∼100-fold dimmer intensities in mutants lacking Ca(2+)-permeable transient receptor potential (TRP) channels or protein kinase C (PKC). Resynthesis of PtdIns4P (t½ ∼12 s) was faster than PtdIns(4,5)P2 (t½ ∼40 s), but both were greatly slowed in mutants of DAG kinase (rdgA) or PtdIns transfer protein (rdgB). The results indicate that Ca(2+)- and PKC-dependent inhibition of PLC is required for enabling photoreceptors to maintain phosphoinositide levels despite high rates of hydrolysis by PLC, and suggest that phosphorylation of PtdIns4P to PtdIns(4,5)P2 is the rate-limiting step of the cycle.This research was supported by grants from the BBSRC (BB/M00706/1 and BB/J009253/1; RCH, C-HL,ASR) and the Cambridge-Nehru Trust (SS).This is the final version of the article. It first appeared from The Company of Biologists via http://dx.doi.org/10.1242/jcs.18036
Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog
Alcohol synergistically enhances the progression of liver disease and the risk for liver cancer caused by hepatitis C virus (HCV). However, the molecular mechanism of this synergy remains unclear. Here, we provide the first evidence that Toll-like receptor 4 (TLR4) is induced by hepatocyte-specific transgenic (Tg) expression of the HCV nonstructural protein NS5A, and this induction mediates synergistic liver damage and tumor formation by alcohol-induced endotoxemia. We also identify Nanog, the stem/progenitor cell marker, as a novel downstream gene up-regulated by TLR4 activation and the presence of CD133/Nanog-positive cells in liver tumors of alcohol-fed NS5A Tg mice. Transplantation of p53-deficient hepatic progenitor cells transduced with TLR4 results in liver tumor development in mice following repetitive LPS injection, but concomitant transduction of Nanog short-hairpin RNA abrogates this outcome. Taken together, our study demonstrates a TLR4-dependent mechanism of synergistic liver disease by HCV and alcohol and an obligatory role for Nanog, a TLR4 downstream gene, in HCV-induced liver oncogenesis enhanced by alcohol
Embedding initial data for black hole collisions
We discuss isometric embedding diagrams for the visualization of initial data
for the problem of the head-on collision of two black holes. The problem of
constructing the embedding diagrams is explicitly presented for the best
studied initial data, the Misner geometry. We present a partial solution of the
embedding diagrams and discuss issues related to completing the solution.Comment: (27pp text, 11 figures
Rainbow peacock spiders inspire miniature super-iridescent optics
Colour produced by wavelength-dependent light scattering is a key component of visual communication in nature and acts particularly strongly in visual signalling by structurally-coloured animals during courtship. Two miniature peacock spiders (Maratus robinsoni and M. chrysomelas) court females using tiny structured scales (similar to 40 x 10 mu m(2)) that reflect the full visual spectrum. Using TEM and optical modelling, we show that the spiders' scales have 2D nanogratings on microscale 3D convex surfaces with at least twice the resolving power of a conventional 2D diffraction grating of the same period. Whereas the long optical path lengths required for light-dispersive components to resolve individual wavelengths constrain current spectrometers to bulky sizes, our nano-3D printed prototypes demonstrate that the design principle of the peacock spiders' scales could inspire novel, miniature light-dispersive components
- …
