2,616 research outputs found

    CMB Lensing Reconstruction on the Full Sky

    Get PDF
    Gravitational lensing of the microwave background by the intervening dark matter mainly arises from large-angle fluctuations in the projected gravitational potential and hence offers a unique opportunity to study the physics of the dark sector at large scales. Studies with surveys that cover greater than a percent of the sky will require techniques that incorporate the curvature of the sky. We lay the groundwork for these studies by deriving the full sky minimum variance quadratic estimators of the lensing potential from the CMB temperature and polarization fields. We also present a general technique for constructing these estimators, with harmonic space convolutions replaced by real space products, that is appropriate for both the full sky limit and the flat sky approximation. This also extends previous treatments to include estimators involving the temperature-polarization cross-correlation and should be useful for next generation experiments in which most of the additional information from polarization comes from this channel due to sensitivity limitations.Comment: Accepted for publication in Phys. Rev. D; typos correcte

    Microstructures and mechanical properties of as cast Mg‐Zr‐Ca alloys for biomedical applications

    Full text link
    The microstructures and mechanical properties of as cast Mg-Zr-Ca alloys were investigated for potential use in biomedical applications. The Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9 mass-%), Ca (99.9 mass-%) and master Mg-33 mass-%Zr alloy. The microstructures of the alloys were examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the Mg-Zr-Ca alloys with 1 mass-%Ca are composed of one single a phase; these alloys with 2 mass-%Ca consist of both Mg 2Ca and α phase, and all the alloys exhibit typical coarse microstructures. An increase in Zr increases the strength of Mg-Zr-Ca alloys with 1 mass-%Ca, and the formation of Mg2Ca decreases the strength of the alloys. Mg-1Zr-1Ca alloy (mass-%) has the highest strength and best ductility among all the studied alloys

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte

    Weak Lensing of the CMB: Cumulants of the Probability Distribution Function

    Get PDF
    We discuss the real-space moments of temperature anisotropies in the cosmic microwave background (CMB) due to weak gravitational lensing by intervening large-scale structure. We show that if the probability distribution function of primordial temperature anisotropies is Gaussian, then it remains unchanged after gravitational lensing. With finite resolution, however, non-zero higher-order cumulants are generated both by lensing autocorrelations and by cross-correlations between the lensing potential and secondary anisotropies in the CMB such as the Sunayev-Zel'dovich (SZ) effect. Skewness is produced by these lensing-SZ correlations, while kurtosis receives contributions from both lensing alone and lensing-SZ correlations. We show that if the projected lensing potential is Gaussian, all cumulants of higher-order than the kurtosis vanish. While recent results raise the possibility of detection of the skewness in upcoming data, the kurtosis will likely remain undetected.Comment: 11 pages, 4 figures, submitted to PR

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    Decoherence, Re-coherence, and the Black Hole Information Paradox

    Get PDF
    We analyze a system consisting of an oscillator coupled to a field. With the field traced out as an environment, the oscillator loses coherence on a very short {\it decoherence timescale}; but, on a much longer {\it relaxation timescale}, predictably evolves into a unique, pure (ground) state. This example of {\it re-coherence} has interesting implications both for the interpretation of quantum theory and for the loss of information during black hole evaporation. We examine these implications by investigating the intermediate and final states of the quantum field, treated as an open system coupled to an unobserved oscillator.Comment: 23 pages, 2 figures included, figures 3.1 - 3.3 available at http://qso.lanl.gov/papers/Papers.htm

    Relativistic treatment of harmonics from impurity systems in quantum wires

    Get PDF
    Within a one particle approximation of the Dirac equation we investigate a defect system in a quantum wire. We demonstrate that by minimally coupling a laser field of frequency omega to such an impurity system, one may generate harmonics of multiples of the driving frequency. In a multiple defect system one may employ the distance between the defects in order to tune the cut-off frequency.Comment: 9 pages Latex, 8 eps figures, section added, numerics improve

    Superconducting Coherence and the Helicity Modulus in Vortex Line Models

    Full text link
    We show how commonly used models for vortex lines in three dimensional superconductors can be modified to include k=0 excitations. We construct a formula for the k=0 helicity modulus in terms of fluctuations in the projected area of vortex loops. This gives a convenient criterion for the presence of superconducting coherence. We also present Monte Carlo simulations of a continuum vortex line model for the melting of the Abrikosov vortex lattice in pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps

    Sixty Years of Fractal Projections

    Get PDF
    Sixty years ago, John Marstrand published a paper which, among other things, relates the Hausdorff dimension of a plane set to the dimensions of its orthogonal projections onto lines. For many years, the paper attracted very little attention. However, over the past 30 years, Marstrand's projection theorems have become the prototype for many results in fractal geometry with numerous variants and applications and they continue to motivate leading research.Comment: Submitted to proceedings of Fractals and Stochastics
    corecore