2,616 research outputs found
CMB Lensing Reconstruction on the Full Sky
Gravitational lensing of the microwave background by the intervening dark
matter mainly arises from large-angle fluctuations in the projected
gravitational potential and hence offers a unique opportunity to study the
physics of the dark sector at large scales. Studies with surveys that cover
greater than a percent of the sky will require techniques that incorporate the
curvature of the sky. We lay the groundwork for these studies by deriving the
full sky minimum variance quadratic estimators of the lensing potential from
the CMB temperature and polarization fields. We also present a general
technique for constructing these estimators, with harmonic space convolutions
replaced by real space products, that is appropriate for both the full sky
limit and the flat sky approximation. This also extends previous treatments to
include estimators involving the temperature-polarization cross-correlation and
should be useful for next generation experiments in which most of the
additional information from polarization comes from this channel due to
sensitivity limitations.Comment: Accepted for publication in Phys. Rev. D; typos correcte
Microstructures and mechanical properties of as cast Mg‐Zr‐Ca alloys for biomedical applications
The microstructures and mechanical properties of as cast Mg-Zr-Ca alloys were investigated for potential use in biomedical applications. The Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9 mass-%), Ca (99.9 mass-%) and master Mg-33 mass-%Zr alloy. The microstructures of the alloys were examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the Mg-Zr-Ca alloys with 1 mass-%Ca are composed of one single a phase; these alloys with 2 mass-%Ca consist of both Mg 2Ca and α phase, and all the alloys exhibit typical coarse microstructures. An increase in Zr increases the strength of Mg-Zr-Ca alloys with 1 mass-%Ca, and the formation of Mg2Ca decreases the strength of the alloys. Mg-1Zr-1Ca alloy (mass-%) has the highest strength and best ductility among all the studied alloys
Sodium atoms and clusters on graphite: a density functional study
Sodium atoms and clusters (N<5) on graphite (0001) are studied using density
functional theory, pseudopotentials and periodic boundary conditions. A single
Na atom is observed to bind at a hollow site 2.45 A above the surface with an
adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates
a flat potential energy surface. Increased Na coverage results in a weak
adsorbate-substrate interaction, which is evident in the larger separation from
the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The
binding is weak for Na_2, which has a full valence electron shell. The presence
of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and
both Na_4 and Na_5 are distorted from planarity. The calculated formation
energies suggest that clustering of atoms is energetically favorable, and that
the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite
than in the gas phase. Analysis of the lateral charge density distributions of
Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure
Well-posedness of Hydrodynamics on the Moving Elastic Surface
The dynamics of a membrane is a coupled system comprising a moving elastic
surface and an incompressible membrane fluid. We will consider a reduced
elastic surface model, which involves the evolution equations of the moving
surface, the dynamic equations of the two-dimensional fluid, and the
incompressible equation, all of which operate within a curved geometry. In this
paper, we prove the local existence and uniqueness of the solution to the
reduced elastic surface model by reformulating the model into a new system in
the isothermal coordinates. One major difficulty is that of constructing an
appropriate iterative scheme such that the limit system is consistent with the
original system.Comment: The introduction is rewritte
Weak Lensing of the CMB: Cumulants of the Probability Distribution Function
We discuss the real-space moments of temperature anisotropies in the cosmic
microwave background (CMB) due to weak gravitational lensing by intervening
large-scale structure. We show that if the probability distribution function of
primordial temperature anisotropies is Gaussian, then it remains unchanged
after gravitational lensing. With finite resolution, however, non-zero
higher-order cumulants are generated both by lensing autocorrelations and by
cross-correlations between the lensing potential and secondary anisotropies in
the CMB such as the Sunayev-Zel'dovich (SZ) effect. Skewness is produced by
these lensing-SZ correlations, while kurtosis receives contributions from both
lensing alone and lensing-SZ correlations. We show that if the projected
lensing potential is Gaussian, all cumulants of higher-order than the kurtosis
vanish. While recent results raise the possibility of detection of the skewness
in upcoming data, the kurtosis will likely remain undetected.Comment: 11 pages, 4 figures, submitted to PR
Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium
We have investigated the structural sequence of the high-pressure phases of
silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase
transitions. We have used the plane-wave pseudopotential approach to the
density-functional theory implemented within the Vienna ab-initio simulation
package (VASP). We have determined the equilibrium properties of each structure
and the values of the critical parameters including a hysteresis effect at the
phase transitions. The order of the phase transitions has been obtained
alternatively from the pressure dependence of the enthalpy and of the internal
structure parameters. The commonly used tangent construction is shown to be
very unreliable. Our calculations identify a first-order phase transition from
the cd to the beta-tin and from the Imma to the sh phase, and they indicate the
possibility of a second-order phase-transition from the beta-tin to the Imma
phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure
Decoherence, Re-coherence, and the Black Hole Information Paradox
We analyze a system consisting of an oscillator coupled to a field. With the
field traced out as an environment, the oscillator loses coherence on a very
short {\it decoherence timescale}; but, on a much longer {\it relaxation
timescale}, predictably evolves into a unique, pure (ground) state. This
example of {\it re-coherence} has interesting implications both for the
interpretation of quantum theory and for the loss of information during black
hole evaporation. We examine these implications by investigating the
intermediate and final states of the quantum field, treated as an open system
coupled to an unobserved oscillator.Comment: 23 pages, 2 figures included, figures 3.1 - 3.3 available at
http://qso.lanl.gov/papers/Papers.htm
Relativistic treatment of harmonics from impurity systems in quantum wires
Within a one particle approximation of the Dirac equation we investigate a
defect system in a quantum wire. We demonstrate that by minimally coupling a
laser field of frequency omega to such an impurity system, one may generate
harmonics of multiples of the driving frequency. In a multiple defect system
one may employ the distance between the defects in order to tune the cut-off
frequency.Comment: 9 pages Latex, 8 eps figures, section added, numerics improve
Superconducting Coherence and the Helicity Modulus in Vortex Line Models
We show how commonly used models for vortex lines in three dimensional
superconductors can be modified to include k=0 excitations. We construct a
formula for the k=0 helicity modulus in terms of fluctuations in the projected
area of vortex loops. This gives a convenient criterion for the presence of
superconducting coherence. We also present Monte Carlo simulations of a
continuum vortex line model for the melting of the Abrikosov vortex lattice in
pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps
Sixty Years of Fractal Projections
Sixty years ago, John Marstrand published a paper which, among other things,
relates the Hausdorff dimension of a plane set to the dimensions of its
orthogonal projections onto lines. For many years, the paper attracted very
little attention. However, over the past 30 years, Marstrand's projection
theorems have become the prototype for many results in fractal geometry with
numerous variants and applications and they continue to motivate leading
research.Comment: Submitted to proceedings of Fractals and Stochastics
- …
