278 research outputs found
A Study of the Merger History of the Galaxy Group HCG 62 Based on X-Ray Observations and SPH Simulations
We choose the bright compact group HCG 62, which was found to exhibit both
excess X-ray emission and high Fe abundance to the southwest of its core, as an
example to study the impact of mergers on chemical enrichment in the intragroup
medium. We first reanalyze the high-quality Chandra and XMM-Newton archive data
to search for the evidence for additional SN II yields, which is expected as a
direct result of the possible merger-induced starburst. We reveal that, similar
to the Fe abundance, the Mg abundance also shows a high value in both the
innermost region and the southwest substructure, forming a high-abundance
plateau, meanwhile all the SN Ia and SN II yields show rather flat
distributions in in favor of an early enrichment. Then we carry
out a series of idealized numerical simulations to model the collision of two
initially isolated galaxy groups by using the TreePM-SPH GADGET-3 code. We find
that the observed X-ray emission and metal distributions, as well as the
relative positions of the two bright central galaxies with reference to the
X-ray peak, can be well reproduced in a major merger with a mass ratio of 3
when the merger-induced starburst is assumed. The `best-match' snapshot is
pinpointed after the third pericentric passage when the southwest substructure
is formed due to gas sloshing. By following the evolution of the simulated
merging system, we conclude that the effects of such a major merger on chemical
enrichment are mostly restricted within the core region when the final relaxed
state is reached.Comment: Accepted for publication in the Astrophysical Journa
Exploration of Teaching Reform in Environmental Protection Equipment and Engineering Design Course under the Background of New Engineering
Environmental protection equipment and engineering design is an important foundational course for environmental majors in higher education institutions, which combines systematic theory with strong practicality. The article is based on research on learning situations and pain points in educational reform. Through a series of educational reform measures, a learning community is established, scientific research is strengthened to support teaching, teaching content is optimized, teaching cases are enriched, and diversified teaching practices are carried out; Expand the second classroom, build a teaching platform, establish a mentorship system for undergraduate students, and organize all students to participate in innovation and entrepreneurship competitions; Integrating ideological and political education into the curriculum, cultivating students' scientific thinking, and solving practical environmental problems. Since the implementation of this innovative model, it has broadened students' horizons and improved the quality of teaching; We have established a comprehensive and full-time education model, enhancing students' practical and innovative abilities; It cultivates students' scientific thinking and exercises their ability to solve practical environmental problems, which has certain promotion and reference significance for comprehensively promoting the reform of the environmental chemistry curriculum system. Keywords: New engineering, Environmental protection equipment and engineering design, Scientific thinking DOI: 10.7176/JEP/15-11-03 Publication date: October 30th 2024
3D Building Reconstruction from Monocular Remote Sensing Images with Multi-level Supervisions
3D building reconstruction from monocular remote sensing images is an
important and challenging research problem that has received increasing
attention in recent years, owing to its low cost of data acquisition and
availability for large-scale applications. However, existing methods rely on
expensive 3D-annotated samples for fully-supervised training, restricting their
application to large-scale cross-city scenarios. In this work, we propose
MLS-BRN, a multi-level supervised building reconstruction network that can
flexibly utilize training samples with different annotation levels to achieve
better reconstruction results in an end-to-end manner. To alleviate the demand
on full 3D supervision, we design two new modules, Pseudo Building Bbox
Calculator and Roof-Offset guided Footprint Extractor, as well as new tasks and
training strategies for different types of samples. Experimental results on
several public and new datasets demonstrate that our proposed MLS-BRN achieves
competitive performance using much fewer 3D-annotated samples, and
significantly improves the footprint extraction and 3D reconstruction
performance compared with current state-of-the-art. The code and datasets of
this work will be released at https://github.com/opendatalab/MLS-BRN.git.Comment: accepted by CVPR 202
Search for the Lepton Flavor Violation Process at BESIII
We search for the lepton-flavor-violating decay of the into an
electron and a muon using events
collected with the BESIII detector at the BEPCII collider. Four candidate
events are found in the signal region, consistent with background expectations.
An upper limit on the branching fraction of (90% C.L.) is obtained
Group-aware Parameter-efficient Updating for Content-Adaptive Neural Video Compression
Content-adaptive compression is crucial for enhancing the adaptability of the pre-trained neural codec for various contents. Although these methods have been very practical in neural image compression (NIC), their application in neural video compression (NVC) is still limited due to two main aspects: 1), video compression relies heavily on temporal redundancy, therefore updating just one or a few frames can lead to significant errors accumulating over time; 2), NVC frameworks are generally more complex, with many large components that are not easy to update quickly during encoding. To address the previously mentioned challenges, we have developed a content-adaptive NVC technique called Group-aware Parameter-Efficient Updating (GPU). Initially, to minimize error accumulation, we adopt a group-aware approach for updating encoder parameters. This involves adopting a patch-based Group of Pictures (GoP) training strategy to segment a video into patch-based GoPs, which will be updated to facilitate a globally optimized domain-transferable solution. Subsequently, we introduce a parameter-efficient delta-tuning strategy, which is achieved by integrating several light-weight adapters into each coding component of the encoding process by both serial and parallel configuration. Such architecture-agnostic modules stimulate the components with large parameters, thereby reducing both the update cost and the encoding time. We incorporate our GPU into the latest NVC framework and conduct comprehensive experiments, whose results showcase outstanding video compression efficiency across four video benchmarks and adaptability of one medical image benchmark.Accepted by ACM MM 2024, Melbourne, Australi
- …
