228 research outputs found

    Correlations among nicotine dependence, health-related quality of life, and depression in current smokers: a cross-sectional study with a mediation model

    Get PDF
    BackgroundAlthough the negative impact of smoking and health-related quality of life (HRQoL) on depression has been confirmed in various studies, There has been little exploration of how HRQoL mediates the relationship between smoking and depression. The purpose of the current study was to examine the relationship between smoking and depression in the Chinese current smokers with nicotine dependence and the mediating role of HRQoL.MethodsA cross-sectional study named “Psychology and Behavior Investigation of Chinese Residents” was conducted from July 10 to September 15, 2021 in China. Nicotine dependence, HRQoL and depression were measured by Fagerstrom Test for Nicotine Dependence (FTND), the European Five Dimensional Five Level Health scale (EQ-5D-5L) and the 9-item Patient Health Questionnaire (PHQ-9) respectively. Information on age, gender, place of residence, household registration, education level, marital status, employment status, average family monthly income, drinking frequency, living status, BMI, multiple chronic conditions were also collected. Pearson’s correlation test and logistic regression analysis were conducted to explore the association between nicotine dependence, HRQoL and depression and a mediation analysis was applied to explore the mediating effect of the HRQoL on this relationship.ResultsA total of 1,381 current smokers were included in the study. The participants showed a moderate level of nicotine dependence with a mean of 1.36(SD=1.50), a relatively high level of HRQoL scores (Mean=0.94, SD=0.13), and a depression score with a mean of 6.48(SD=6.09). Approximately 22.74% (314/1,381) of the participants were considered to indicate depression. In the univariable regression model, it was found that nicotine dependence was positively associated with depression (OR:1.094, 95%CI: 1.008-1.187), while HRQoL was negatively associated with depression (OR:0.011, 95%CI: 0.004-0.033). In the multivariable regression model, HRQoL was still notably associated with depression (OR:0.008, 95%CI: 0.002-0.027), however, the positive association was not observed between nicotine dependence and depression. The Pearson’s correlation test demonstrated that nicotine dependence was negatively correlated with HRQoL(rs= -0.147, P<0.001) and HRQoL was negatively correlated with depression(rs= -0.275, P<0.001). In contrast, nicotine dependence was positively correlated with depression(rs= 0.136, P<0.001). Mediation analysis found that HRQoL moderated the relationship between nicotine dependence and depression with a mediating effect of 26.49%.ConclusionsThe findings support that nicotine dependence is positively associated with depression and HRQoL is negatively associated with depression in current smokers. HRQoL mediated the relationship between nicotine dependence and depression. The well-established imperative interventions aimed at promoting smoking cessation and improving quality of life may benefit for alleviation of depression in current smokers

    Exposure to Chinese famine and the risk of hyperuricemia in later life: a population-based cross-sectional study

    Get PDF
    BackgroundLimited studies have investigated the relationship between famine exposure and the risk of hyperuricemia in later life. Consequently, the primary purpose of the current study was to examine the potential association between exposure to Chinese famine and hyperuricemia, as well as any gender disparities in this relationship.MethodThe data were obtained from the China PEACE (China Patient-Centered Evaluative Assessment of Cardiac Events) Million Persons Project in Rongchang. The study participants were enrolled into different cohorts based on their birthdates: the fetal-exposed cohort (born between 1959 and 1962), the childhood-exposed cohort (born between 1949 and 1958), the adolescence-exposed cohort (born between 1941 and 1948), and the non-exposed cohorts (born between 1963 and 1974). The potential association between famine exposure and hyperuricemia was assessed using binary logistic regression models.ResultsA total of 6,916 individuals were enrolled in the current study with an average age of 60.11 ± 9.22 years, out of which 3,544 were women. After adjusting for confounding factors, fetal (OR = 0.530, 95% CI: 0.411–0.0.683), childhood (OR = 0.642, 95% CI: 0.494–0.833) exposure to the Chinese famine for men was negatively associated with hyperuricemia. Conversely, exposure to the Chinese famine during fetal (OR = 2.144, 95% CI: 1.622–2.834), childhood (OR = 1.485, 95% CI: 1.105–1.997), and adolescence (OR = 1.967, 95% CI: 1.465–2.641) for women was positively associated with hyperuricemia. Furthermore, the impact of famine on hyperuricemia that has been observed in exposed women might be intensified by the presence of dyslipidemia, abdominal obesity, and overweight/obesity.ConclusionWomen exposed to the Chinese famine during fetal, childhood, and adolescence were positively associated with hyperuricemia, while men exhibited a negative association during fetal and childhood. Additionally, the effect of famine on hyperuricemia in exposed women appears to be intensified by the presence of dyslipidemia, abdominal obesity, and overweight/obesity

    Neuro-Fuzzy Based High-Voltage DC Model to Optimize Frequency Stability of an Offshore Wind Farm

    Get PDF
    Lack of synchronization between high voltage DC systems linking offshore wind farms and the onshore grid is a natural consequence owing to the stochastic nature of wind energy. The poor synchronization results in increased system disturbances, grid contingencies, power loss, and frequency instability. Emphasizing frequency stability analysis, this research investigates a dynamic coordination control technique for a Double Fed Induction Generator (DFIG) consisting of OWFs integrated with a hybrid multi-terminal HVDC (MTDC) system. Line commutated converters (LCC) and voltage source converters (VSC) are used in the suggested control method in order to ensure frequency stability. The adaptive neuro-fuzzy inference approach is used to accurately predict wind speed in order to further improve frequency stability. The proposed HVDC system can integrate multiple distributed OWFs with the onshore grid system, and the control strategy is designed based on this concept. In order to ensure the transient stability of the HVDC system, the DFIG-based OWF is regulated by a rotor side controller (RSC) and a grid side controller (GSC) at the grid side using a STATCOM. The devised HVDC (MTDC) is simulated in MATLAB/SIMULINK, and the performance is evaluated in terms of different parameters, such as frequency, wind power, rotor and stator side current, torque, speed, and power. Experimental results are compared to a conventional optimal power flow (OPF) model to validate the performance.© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Research progress on the antibacterial mechanism of natural plant extracts and its application in meat preservation by combining with modern emerging technologies

    Get PDF
    Natural plant extracts are emerging as a new class of preservative in the food industry, offering advantages such as being green, safe, non-toxic, and highly effective in inhibiting bacterial growth. However, their specific antimicrobial activity and underlying mechanism remain incompletely understood, and their applications require further exploration and optimization. This review analyzed and summarized the types of active ingredients and bacteriostatic effects of common natural plant extracts, and explored their potential bacteriostatic mechanisms as well as the synergistic effects of these extracts used for meat preservation in combination with emerging food preservation technologies

    Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting

    Get PDF
    Background: An intimidating challenge to transporting drugs into the brain parenchyma is the presence of the blood-brain barrier (BBB). Glucose is an essential nutritional substance for brain function sustenance, which cannot be synthesized by the brain. Its transport primarily depends on the glucose transporters on the brain capillary endothelial cells. In this paper, the brain-targeted properties of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers were compared and evaluated to establish an optimized drug-delivery system. Methods: Coumarin 6-loaded liposomes (GLU200-LIP, GLU400-LIP, GLU1000-LIP, and GLU2000-LIP) composed of phospholipids and glucose-derived cholesterols were prepared by thin-film dispersion-ultrasound method. The BBB model in vitro was developed to evaluate the transendothelial ability of the different liposomes crossing the BBB. The biodistribution of liposomes in the mice brains was identified by in vivo and ex vivo nearinfrared fluorescence imaging and confocal laser scanning microscopy and further analyzed quantitatively by high-performance liquid chromatography. Results: Glucose-derived cholesterols were synthesized and identified, and coumarin 6-loaded liposomes were prepared successfully. The particle sizes of the four types of glucose-modified liposomes were around or smaller than 100 nm with a polydispersity index less than 0.300. GLU400-LIP, GLU1000-LIP, and GLU2000-LIP achieved higher cumulative cleared volumes on BBB model in vitro after 6 hours compared with GLU200-LIP (P < 0.05) and were significantly higher than that of the conventional liposome (P < 0.001). The qualitative and quantitative biodistribution results in the mice showed that the accumulation of GLU1000-LIP in the brain was the highest among all the groups (P < 0.01 versus LIP). Conclusion: The data indicated that GLU400-LIP, GLU1000-LIP, and GLU2000-LIP all possess the potential of brain targeting, among which GLU1000-LIP, as a promising drug-delivery system, exhibited the strongest brain delivery capacity.Nanoscience & NanotechnologyPharmacology & PharmacySCI(E)0ARTICLE163-175

    Research progress on the separation, purification, characterization, biological activity and application of pectin from Premna microphylla Turcz leaves

    Get PDF
    This review categorizes and summarizes the separation and purification approaches of pectin from Premna microphylla Turcz; Recapitulates the structural methods of pectin from Premna microphylla Turcz; Briefly delineates the biological activities and applications of pectin from Premna microphylla Turcz. The separation and purification methods of pectin from Premna microphylla Turcz leaves were classified and summarized, and the structural characterization methods of the pectin were also introduced in this review. Moreover, the biological activity and application of the pectin from P. microphylla were briefly described

    Combination of Sodium Butyrate and Immunotherapy in Glioma: regulation of immunologically hot and cold tumors via gut microbiota and metabolites

    Get PDF
    BackgroundRecent studies have highlighted the importance of cross-talk along the gut-brain axis in regulating inflammatory nociception, inflammatory responses, and immune homeostasis. The gut microbiota, particularly its bacterial composition, plays a crucial role in the development and function of the immune system. Moreover, metabolites produced by the gut microbiota can significantly impact both systemic immune responses and central nervous system (CNS) immunity. Sodium butyrate is a key metabolite produced by the gut microbiota and, as a histone deacetylase inhibitor, can enhance the anti-tumor immunity of cytotoxic CD8+ T cells. However, it remains unclear whether sodium butyrate treatment can enhance the efficacy of PD-1 blockade in glioma therapy. In this research, the effect and underlying mechanism of combination of gut microbiota metabolites and anti-mouse PD-1 mAb on glioma has been investigated.MethodsRNA-seq assay in glioma cell and biomedical databases, including ONCOMINE, GEPIA and TCGA were incorporated. Subsequently, the inhibitory effect of sodium butyrate on glioma cells and its related mechanisms were assessed through Counting Kit-8 (CCK-8), Flow Cytometry, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments. In vitro, an orthotopic mouse glioma model was established. MRI imaging, Immunohistochemistry, and Immune cell flow cytometry were used to investigate the therapeutic effects of combined sodium butyrate and PD-1 inhibitor treatment on glioma-bearing mice.ResultsWe discovered that deacetylation-associated gene expression is significantly increased in glioma patients and affects patient survival time. Moreover, we found sodium butyrate promoted glioma cell apoptosis, disrupted the cell cycle, and inhibited tumor growth. Additionally, sodium butyrate may upregulate PD-L1 expression in glioma cells by modulating the PI3K/AKT pathway. The experimental results demonstrated that this combination therapy significantly reduced tumor volume and prolonged survival in an orthotopic murine glioma model. Moreover, combination therapy led to an increase in the proportion of probiotic bacteria in the mouse gut microbiota, resulting in elevated levels of antitumor metabolites and a decrease in metabolites that affect immune cell function

    RNA modifications in cancer immune therapy: regulators of immune cells and immune checkpoints

    Get PDF
    RNA modifications are epigenetic changes that alter the structure and function of RNA molecules, playing a crucial role in the onset, progression, and treatment of cancer. Immune checkpoint inhibitor (ICI) therapies, particularly PD-1 blockade and anti-CTLA-4 treatments, have changed the treatment landscape of virous cancers, showing great potential in the treatment of different cancer patients, but sensitivity to these therapies is limited to certain individuals. This review offers a comprehensive survey of the functions and therapeutic implications of the four principal RNA modifications, particularly highlighting the significance of m6A in the realms of immune cells in tumor and immunotherapy. This review starts by providing a foundational summary of the roles RNA modifications assume within the immune cell community, focusing on T cells, NK cells, macrophages, and dendritic cells. We then discuss how RNA modifications influence the intricate regulatory mechanisms governing immune checkpoint expression, modulation of ICI efficacy, and prediction of ICI treatment outcomes, and review drug therapies targeting genes regulated by RNA modifications. Finally, we explore the role of RNA modifications in gene editing, cancer vaccines, and adoptive T cell therapies, offering valuable insights into the use of RNA modifications in cancer immunotherapy

    MicroRNA-1224 Inhibits Tumor Metastasis in Intestinal-Type Gastric Cancer by Directly Targeting FAK

    Get PDF
    Intestinal-type gastric cancer (GC) of the Lauren classification system has specific epidemiological characteristics and carcinogenesis patterns. MicroRNAs (miRNAs) have prognostic significance, and some can be used as prognostic biomarkers in GC. In this study, we identified miR-1224 as a potential survival-related miRNA in intestinal-type GC patients by The Cancer Genome Atlas (TCGA) analysis. Using quantitative real-time PCR (qRT-PCR), we showed that the relative expression of miR-1224 was significantly decreased in intestinal-type GC tissues compared to matched adjacent normal mucosa tissues (p < 0.01). We found that high miR-1224 expression was associated with no lymph-node metastasis (p < 0.05) and good prognosis (p = 0.028) in 90 intestinal-type GC tissues. Transfection of intestinal-type GC cells with miR-1224 mimics showed that miR-1224 suppressed cell migration in vitro (wound healing assay and Transwell migration assay), whereas the transfection of cells with miR-1224 inhibitor promoted cell migration in vitro. miR-1224 also suppressed intestinal-type GC cell metastasis in a xenograft mouse model. Furthermore, bioinformatics, luciferase reporter, Western blotting, and immunohistochemistry (IHC) studies demonstrated that miR-1224 directly bound to the focal adhesion kinase (FAK) gene, and downregulated its expression, which decreased STAT3 and NF-κB signaling and subsequent the epithelial-to-mesenchymal transition (EMT). Repression of FAK is required for the miR-1224-mediated inhibition of cell migration in intestinal-type GC. The present study demonstrated that miR-1224 is downregulated in intestinal-type GC. miR-1224 inhibits the metastasis of intestinal-type GC by suppressing FAK-mediated activation of the STAT3 and NF-κB pathways, and subsequent EMT. miR-1224 could represent an important prognostic factor in intestinal-type GC

    MIBiG 3.0 : a community-driven effort to annotate experimentally validated biosynthetic gene clusters

    Get PDF
    With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/
    corecore