2,136 research outputs found
Chinese and North American Culture: a New Perspective in Linguistics Studies
We explored the two cultures in the two countries. There has been discussed on Chinese culture and North American culture. Chinese language, ceramics, architecture, music, dance, literature, martial arts, cuisine, visual arts, philosophy, business etiquette, religion, politics, and history have global influence, while its traditions and festivals are also celebrated, instilled, and practiced by people around the world. The culture of North America refers to the arts and other manifestations of human activities and achievements from the continent of North America. The American way of life or simply the American way is the unique lifestyle of the people of the United States of America. It refers to a nationalist ethos that adheres to the principle of life, liberty and the pursuit of happiness
Quantum Limits of Interferometer Topologies for Gravitational Radiation Detection
In order to expand the astrophysical reach of gravitational wave detectors,
several interferometer topologies have been proposed to evade the thermodynamic
and quantum mechanical limits in future detectors. In this work, we make a
systematic comparison among them by considering their sensitivities and
complexities. We numerically optimize their sensitivities by introducing a cost
function that tries to maximize the broadband improvement over the sensitivity
of current detectors. We find that frequency-dependent squeezed-light injection
with a hundred-meter scale filter cavity yields a good broadband sensitivity,
with low complexity, and good robustness against optical loss. This study gives
us a guideline for the near-term experimental research programs in enhancing
the performance of future gravitational-wave detectors.Comment: grammar correcte
Game theory-based resource allocation for secure WPCN multiantenna multicasting systems
This paper investigates a secure wireless-powered multiantenna multicasting system, where multiple power beacons (PBs) supply power to a transmitter in order to establish a reliable communication link with multiple legitimate users in the presence of multiple eavesdroppers. The transmitter has to harvest radio frequency (RF) energy from multiple PBs due to the shortage of embedded power supply before establishing its secure com- munication. We exploit a novel and practical scenario that the PBs and the transmitter may belong to different operators and a hierarchical energy interaction between the PBs and the transmitter is considered. Specifically, the monetary incentives are required for the PBs to assist the transmitter for secure communications. This leads to the formulation of a Stackelberg game for the secure wireless-powered multiantenna multicasting system, where the transmitter and the PB are modelled as leader and follower, respectively, each maximizing their own utility function. The closed-form Stackelberg equilibrium of the formulated game is then derived where we study various scenarios of eavesdroppers and legitimate users that can have impact on the optimality of the derived solutions. Finally, numerical results are provided to validate our proposed schemes
Towards the Laboratory Search for Space-Time Dissipation
It has been speculated that gravity could be an emergent phenomenon, with
classical general relativity as an effective, macroscopic theory, valid only
for classical systems at large temporal and spatial scales. As in classical
continuum dynamics, the existence of underlying microscopic degrees of freedom
may lead to macroscopic dissipative behaviors. With the hope that such
dissipative behaviors of gravity could be revealed by carefully designed
experiments in the laboratory, we consider a phenomenological model that adds
dissipations to the gravitational field, much similar to frictions in solids
and fluids. Constraints to such dissipative behavior can already be imposed by
astrophysical observations and existing experiments, but mostly in lower
frequencies. We propose a series of experiments working in higher frequency
regimes, which may potentially put more stringent bounds on these models.Comment: 18 pages, 8 figure
On the perspective transformation for efficient relay placement in wireless multicast networks
This letter investigates the relay placement problem in wireless multicast networks consisting of multiple sources, relays, and destinations. The data transmission from the sources to the destinations is carried out via the relays employing physical-layer network coding technique. Hybrid automatic repeat request protocol with incremental redundancy is applied for reliable communication. In particular, considering a general setting of nodes in irregularly shaped network, an efficient relay placement algorithm is proposed based on perspective transformation technique to find optimal relay positions for minimizing either the total energy consumption or the total delay in the whole network. The proposed algorithm not only helps reduce the relay searching complexity but also facilitates the relay placement for optimizing networks of any shape
Fidelity and quantum phase transitions
It is shown that the fidelity, a basic notion of quantum information science,
may be used to characterize quantum phase transitions, regardless of what type
of internal order is present in quantum many-body states. If the fidelity of
two given states vanishes, then there are two cases: (1) they are in the same
phase if the distinguishability results from irrelevant local information; or
(2) they are in different phases if the distinguishability results from
relevant long-distance information. The different effects of irrelevant and
relevant information are quantified, which allows us to identify unstable and
stable fixed points (in the sense of renormalization group theory). A physical
implication of our results is the occurrence of the orthogonality catastrophe
near the transition points.Comment: 5 pages, 2 figure
Beamforming in coexisting wireless systems with uncertain channel state information
This paper considers an underlay access strategy for coexisting wireless networks where the secondary system utilizes the primary spectrum to serve its users. We focus on the practical cases where there is uncertainty in the estimation of channel state information (CSI). Here the throughput performance of each system is limited by the interference imposed by the other, resulting in conflicting objectives. We first analyze the fundamental tradeoff between the tolerance interference level at the primary system and the total achievable throughput of the secondary users. We then introduce a beamforming design problem as a multiobjective optimization to minimize the interference imposed on each of the primary users while maximizing the intended signal received at every secondary user, taking into account the CSI uncertainty. We then map the proposed optimization problem to a robust counterpart under the maximum CSI estimation error. The robust counterpart is then transformed into a standard convex semi-definite programming. Simulation results confirm the effectiveness of the proposed scheme against various levels of CSI estimation error. We further show that in the proposed approach, the trade-off in the two systems modelled by Pareto frontier can be engineered by adjusting system parameters. For instance, the simulations show that at the primary system interference thresholds of -10 dBm (-5 dBm) by increasing number of antennas from 4 to 12, the secondary system throughput is increased by 3.3 bits/s/channel-use (5.3 bits/s/channel-use
Quantum phase transitions in a two-dimensional quantum XYX model: Ground-state fidelity and entanglement
A systematic analysis is performed for quantum phase transitions in a
two-dimensional anisotropic spin 1/2 anti-ferromagnetic XYX model in an
external magnetic field. With the help of an innovative tensor network
algorithm, we compute the fidelity per lattice site to demonstrate that the
field-induced quantum phase transition is unambiguously characterized by a
pinch point on the fidelity surface, marking a continuous phase transition. We
also compute an entanglement estimator, defined as a ratio between the
one-tangle and the sum of squared concurrences, to identify both the
factorizing field and the critical point, resulting in a quantitative agreement
with quantum Monte Carlo simulation. In addition, the local order parameter is
"derived" from the tensor network representation of the system's ground state
wave functions.Comment: 4+ pages, 3 figure
- …
