167 research outputs found
Preparative Separation and Identification of the Flavonoid Phlorhizin from the Crude Extract of Lithocarpus Polystachyus Rehd
The flavonoid phlorhizin is abundant in the leaves of Sweet Tea(ST, Lithocarpus Polystachyus Rehd). Phlorhizinwas preparatively separated and purified from a crude ST extract containing 40% total flavonoids by static adsorption and dynamic desorption on ADS-7 macroporous resin and neutral alumina column chromatography. Only water and ethanol were used as solvents and eluants throughout the whole separation and purification process. Using a phlorhizin standard as the reference compound, the target compound separated from the crude ST extracts was analyzed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and electrosprayionization mass spectrometry (EIS-MS) and identified as 99.87% pure (by HPLC-UV) phlorhizin. The results showed that 10g of the targetcompound could be obtained from 40g of the crude extracts in a single operation, indicating a 40% recovery. Therefore, this represents an efficientand environmentally-friendly technology for separating and purifying phlorhizinfrom ST leaves
Evolution of iron-rich intermetallics and its effect on the mechanical properties of Al–Cu–Mn–Fe–Si alloys after thermal exposure and high-temperature tensile testing
Si addition is commonly used to modify the iron-rich intermetallics in Al–Cu–Mn–Fe alloys, which is beneficial to increasing the use of recycled aluminum. Most of the available research has focused on the effect of Si content on the room-temperature mechanical properties of Al–Cu–Mn–Fe alloys. To expand the application of Al–Cu–Mn–Fe–Si alloys as light heat-resistant structural components in the automotive and aerospace industries, it is of great importance to investigate the evolution of iron-rich intermetallics and its effect on the fracture behavior of Al–Cu–Mn–Fe–Si alloys after thermal exposure and high-temperature tensile testing. In this work, the evolution of iron-rich intermetallics and the high-temperature mechanical properties of heat-treated Al-6.5Cu-0.6Mn-0.5Fe alloys with different Si contents after thermal exposure and high-temperature tensile testing were assessed by tensile tests, image analysis, scanning electron microscopy, X-Ray diffraction, transmission electron microscopy, and atomic probe tomography. The results indicate that the Al-6.5Cu-0.6Mn-0.5Fe alloys with 0.1Si and 0.5Si additions have excellent and stable high-temperature mechanical properties after long thermal exposure, which are better than those of most heat-resistant Al alloys. The high performance of the high-temperature mechanical properties is attributed to the high heat resistance of secondary intermetallics and precipitated particles. The addition of Si is detrimental to the strength of Al-6.5Cu-0.6Mn-0.5Fe alloys after long thermal exposure. This can be attributed to the solid-state phase transformation of iron-rich intermetallics from α-Fe to β-Fe, which results in the increase of needle-like Fe-rich phases and Si particles, the agglomeration of secondary intermetallics, and the consumption of AlCu phases
Social4Rec: Distilling User Preference from Social Graph for Video Recommendation in Tencent
Despite recommender systems play a key role in network content platforms,
mining the user's interests is still a significant challenge. Existing works
predict the user interest by utilizing user behaviors, i.e., clicks, views,
etc., but current solutions are ineffective when users perform unsettled
activities. The latter ones involve new users, which have few activities of any
kind, and sparse users who have low-frequency behaviors. We uniformly describe
both these user-types as "cold users", which are very common but often
neglected in network content platforms. To address this issue, we enhance the
representation of the user interest by combining his social interest, e.g.,
friendship, following bloggers, interest groups, etc., with the activity
behaviors. Thus, in this work, we present a novel algorithm entitled SocialNet,
which adopts a two-stage method to progressively extract the coarse-grained and
fine-grained social interest. Our technique then concatenates SocialNet's
output with the original user representation to get the final user
representation that combines behavior interests and social interests. Offline
experiments on Tencent video's recommender system demonstrate the superiority
over the baseline behavior-based model. The online experiment also shows a
significant performance improvement in clicks and view time in the real-world
recommendation system. The source code is available at
https://github.com/Social4Rec/SocialNet
Multiferroic Magnon Spin-Torque Based Reconfigurable Logic-In-Memory
Magnons, bosonic quasiparticles carrying angular momentum, can flow through
insulators for information transmission with minimal power dissipation.
However, it remains challenging to develop a magnon-based logic due to the lack
of efficient electrical manipulation of magnon transport. Here we present a
magnon logic-in-memory device in a spin-source/multiferroic/ferromagnet
structure, where multiferroic magnon modes can be electrically excited and
controlled. In this device, magnon information is encoded to ferromagnetic bits
by the magnon-mediated spin torque. We show that the ferroelectric polarization
can electrically modulate the magnon spin-torque by controlling the
non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin
films with coupled antiferromagnetic and ferroelectric orders. By manipulating
the two coupled non-volatile state variables (ferroelectric polarization and
magnetization), we further demonstrate reconfigurable logic-in-memory
operations in a single device. Our findings highlight the potential of
multiferroics for controlling magnon information transport and offer a pathway
towards room-temperature voltage-controlled, low-power, scalable magnonics for
in-memory computing
Regulatory effects of acupuncture on emotional disorders in patients with menstrual migraine without aura: a resting-state fMRI study
Background: Menstrual migraine without aura (MMoA) refers to a specific type of migraine that is associated with the female ovarian cycle. It is particularly serious and has brought huge life pressure and mental burden to female patients. Acupuncture has been commonly used to prevent migraines and relieve concomitant emotional disorders; however, the physiological mechanism underlying this intervention remains unclear. This study aimed to use resting-state functional magnetic resonance imaging (rsfMRI) to investigate whether acupuncture can modulate brain function and if the potential influence on brain activity correlates with improving emotional symptoms in MMoA patients.
Methods: Overall, 44 patients were randomly divided into a true acupuncture (TA) group and the sham acupuncture (SA) group. Patients underwent rsfMRI before and after 3-month treatment, the amplitude of low-frequency fuctuations (ALFF) and regional homogeneity (ReHo) in rsfMRI were calculated. Zung self-rating anxiety scale (SAS), Zung self-rating depression scale (SDS), frequency of migraine attacks, visual analog scale, and intensity of the migraine were used for evaluate the clinical effect. The clinical changes of variables were also used to further assess the correlation with brain activity in MMoA patients.
Results: After acupuncture treatment, the emotional symptoms of both groups of patients improved, and the clinical symptoms of migraine were alleviated. The major finding of our study was that patients with MMoA showed lower ALFF value in the left anterior cingulate and the value was positively correlated with the decreases in the SAS and SDS scores. In the SA group, common brain regions responded both in ALFF and regional homogeneity values mainly in the insula, and no significant correlations were observed between brain regions and clinical variables.
Conclusions: These results indicated that both two acupuncture treatments were helpful in treating migraine and could improve emotion symptoms. TA had a relatively better effect in reducing the frequency of migraine attack than SA. The two therapies have different modulation effects as TA regulates emotional disorders by modulating the frontal-limbic regions, and SA may modulate pain perception through the placebo effect on insula and by indirectly regulating emotional disorders. These findings provided evidence that acupuncture is a complementary and alternative therapy to relieve clinical symptoms in female patients with migraines and could help enhance clinical diagnosis and treatment
Genome and pan-genome assembly of asparagus bean (Vigna unguiculata ssp. sesquipedialis) reveal the genetic basis of cold adaptation
Asparagus bean (Vigna unguiculata ssp. sesquipedialis) is an important cowpea subspecies. We assembled the genomes of Ningjiang 3 (NJ, 550.31 Mb) and Dubai bean (DB, 564.12 Mb) for comparative genomics analysis. The whole-genome duplication events of DB and NJ occurred at 64.55 and 64.81 Mya, respectively, while the divergence between soybean and Vigna occurred in the Paleogene period. NJ genes underwent positive selection and amplification in response to temperature and abiotic stress. In species-specific gene families, NJ is mainly enriched in response to abiotic stress, while DB is primarily enriched in respiration and photosynthesis. We established the pan-genomes of four accessions (NJ, DB, IT97K-499-35 and Xiabao II) and identified 20,336 (70.5%) core genes present in all the accessions, 6,507 (55.56%) variable genes in two individuals, and 2,004 (6.95%) unique genes. The final pan genome is 616.35 Mb, and the core genome is 399.78 Mb. The variable genes are manifested mainly in stress response functions, ABC transporters, seed storage, and dormancy control. In the pan-genome sequence variation analysis, genes affected by presence/absence variants were enriched in biological processes associated with defense responses, immune system processes, signal transduction, and agronomic traits. The results of the present study provide genetic data that could facilitate efficient asparagus bean genetic improvement, especially in producing cold-adapted asparagus bean
Influence of ASE noise on the signal OSNR and error vector magnitude in coherent optical communications
Modeling of the impacts of nonlinear propagation on EVM for digital coherent receivers
Tribocorrosion Behavior of Laser Cladded Ti-Al-(C, N) Composite Coatings in Artificial Seawater
MAX phase containing Ti-Al-(C, N) composite coatings is promising in marine engineering due to the improved tribocorrosion performance of titanium alloys. Therefore, novel Ti-Al-(C, N) composite coatings were prepared in this study using laser cladding on TC4 substrate. Electrochemical performances of as-obtained composite coatings were then analyzed under static and dynamic conditions in an artificial seawater environment, and their tribocorrosion behaviors and corrosion–wear synergism mechanism were examined by a tribocorrosion test system. The results showed that the existence of self-lubricating phases Ti2AlC and Ti2AlN in composite coatings and the corrosion products with a certain lubrication effect generated during the friction process kept the average friction coefficient at a low level. With the increase of load, the mechanical failure of the passive film in the friction process was enhanced, the adsorption of corrosive medium on the surface of the passive film led to its active dissolution, and the wear volume increased from 1.45 × 10−2 to 3.24 × 10−2 mm3. The corrosion of composite coatings in artificial seawater was not extensive, and volume loss caused by tribocorrosion was mainly determined by wear behavior. In sumary, the coatings exhibited good bearing capacity in the marine environment, thereby showing broad prospects for marine equipment applications.</jats:p
- …
