616 research outputs found

    Inboard and outboard radial electric field wells in the H- and I-mode pedestal of Alcator C-Mod and poloidal variations of impurity temperature

    Get PDF
    We present inboard (HFS) and outboard (LFS) radial electric field (E[subscript r]) and impurity temperature (T[subscript z]) measurements in the I-mode and H-mode pedestal of Alcator C-Mod. These measurements reveal strong Er wells at the HFS and the LFS midplane in both regimes and clear pedestals in T[subscript z], which are of similar shape and height for the HFS and LFS. While the H-mode E[subscript r] well has a radially symmetric structure, the E[subscript r] well in I-mode is asymmetric, with a stronger ExB shear layer at the outer edge of the E[subscript r] well, near the separatrix. Comparison of HFS and LFS profiles indicates that impurity temperature and plasma potential are not simultaneously flux functions. Uncertainties in radial alignment after mapping HFS measurements along flux surfaces to the LFS do not, however, allow direct determination as to which quantity varies poloidally and to what extent. Radially aligning HFS and LFS measurements based on the T[subscript z] profiles would result in substantial inboard-outboard variations of plasma potential and electron density. Aligning HFS and LFS E[subscript r] wells instead also approximately aligns the impurity poloidal flow profiles, while resulting in a LFS impurity temperature exceeding the HFS values in the region of steepest gradients by up to 70%. Considerations based on a simplified form of total parallel momentum balance and estimates of parallel and perpendicular heat transport time scales seem to favor an approximate alignment of the E[subscript r] wells and a substantial poloidal asymmetry in impurity temperature.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)Swiss National Science Foundatio

    Ligand binding to an Allergenic Lipid Transfer Protein Enhances Conformational Flexibility resulting in an Increase in Susceptibility to Gastroduodenal Proteolysis

    Get PDF
    Non-specific lipid transfer proteins (LTPs) are a family of lipid-binding molecules that are widely distributed across flowering plant species, many of which have been identified as allergens. They are highly resistant to simulated gastroduodenal proteolysis, a property that may play a role in determining their allergenicity and it has been suggested that lipid binding may further increase stability to proteolysis. It is demonstrated that LTPs from wheat and peach bind a range of lipids in a variety of conditions, including those found in the gastroduodenal tract. Both LTPs are initially cleaved during gastroduodenal proteolysis at three major sites between residues 39–40, 56–57 and 79–80, with wheat LTP being more resistant to cleavage than its peach ortholog. The susceptibility of wheat LTP to proteolyic cleavage increases significantly upon lipid binding. This enhanced digestibility is likely to be due to the displacement of Tyr79 and surrounding residues from the internal hydrophobic cavity upon ligand binding to the solvent exposed exterior of the LTP, facilitating proteolysis. Such knowledge contributes to our understanding as to how resistance to digestion can be used in allergenicity risk assessment of novel food proteins, including GMOs

    A Randomized Controlled Trial to Measure Spillover Effects of a Combined Water, Sanitation, and Handwashing Intervention in Rural Bangladesh.

    Full text link
    Water, sanitation, and handwashing interventions may confer spillover effects on intervention recipients' neighbors by interrupting pathogen transmission. We measured geographically local spillovers in the Water Quality, Sanitation, and Handwashing (WASH) Benefits Study, a cluster-randomized trial in rural Bangladesh, by comparing outcomes among neighbors of intervention versus those of control participants. Geographically defined clusters were randomly allocated to a compound-level intervention (i.e., chlorinated drinking water, upgraded sanitation, and handwashing promotion) or control arm. From January 2015 to August 2015, in 180 clusters, we enrolled 1,799 neighboring children who were age matched to trial participants who would have been eligible for the study had they been conceived slightly earlier or later. After 28 months of intervention, we quantified fecal indicator bacteria in toy rinse and drinking water samples and measured soil-transmitted helminth infections and caregiver-reported diarrhea and respiratory illness. Neighbors' characteristics were balanced across arms. Detectable Escherichia coli prevalence in tubewell samples was lower for intervention participants' neighbors than control participants' (prevalence ratio = 0.83; 95% confidence interval: 0.73, 0.95). Fecal indicator bacteria prevalence did not differ between arms for other environmental samples. Prevalence was similar in neighbors of intervention participants versus those of control participants for soil-transmitted helminth infection, diarrhea, and respiratory illness. A compound-level water, sanitation, and handwashing intervention reduced neighbors' tubewell water contamination but did not affect neighboring children's health

    FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater

    Get PDF
    Abstract The extant global Ephemeroptera fauna is represented by over 3,000 described species in 42 families and more than 400 genera. The highest generic diversity occurs in the Neotropics, with a correspondingly high species diversity, while the Palaearctic has the lowest generic diversity, but a high species diversity. Such distribution patterns may relate to how long evolutionary processes have been carrying on in isolation in a bioregion. Over an extended period, there may be extinction of species, but evolution of more genera. Dramatic extinction events such as the K-T mass extinction have affected current mayfly diversity and distribution. Climatic history plays an important role in the rate of speciation in an area, with regions which have been climatically stable over long periods having fewer species per genus, when compared to regions subjected to climatic stresses, such as glaciation. A total of 13 families are endemic to specific bioregions, with eight among them being monospecific. Most of these have restricted distributions which may be the result of them being the relict of a previously more diverse, but presently almost completely extinct family, or may be the consequence of vicariance events, resulting from evolution due to long-term isolation

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Organophosphorous pesticide breakdown products in house dust and children’s urine.

    Get PDF
    Human exposure to preformed dialkylphosphates (DAPs) in food or the environment may affect the reliability of DAP urinary metabolites as biomarkers of organophosphate (OP) pesticide exposure. We conducted a study to investigate the presence of DAPs in indoor residential environments and their association with children’s urinary DAP levels. We collected dust samples from homes in farmworker and urban communities (40 homes total, n=79 samples) and up to two urine samples from resident children ages 3-6 years. We measured six DAPs in all samples and eight DAP-devolving OP pesticides in a subset of dust samples (n=54). DAPs were detected in dust with diethylphosphate (DEP) being the most frequently detected (>=60%); detection frequencies for other DAPs were 0.05). Detection of DEP, chlorpyrifos, or diazinon, was not associated with DEP and/or DEPþdiethylthiophosphate detection in urine (Kappa coefficients=-0.33 to 0.16). Finally, estimated nondietary ingestion intake from DEP in dust was found to be <=5% of the dose calculated from DEP levels in urine, suggesting that ingestion of dust is not a significant source of DAPs in urine if they are excreted unchanged.This work was supported by EPA (RD 83171001) and NIEHS (PO1 ES009605). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the EPA, NIEHS, or other funders. Additional support was provided by an EPA STAR Doctoral Fellowship (F5D30812), the University of California Institute for Mexico and the United States (UC MEXUS), and the Center for Latino Policy Research at the University of California at Berkeley

    Heritable symbionts in a world of varying temperature

    Get PDF
    Heritable microbes represent an important component of the biology, ecology and evolution of many plants, animals and fungi, acting as both parasites and partners. In this review, we examine how heritable symbiont–host interactions may alter host thermal tolerance, and how the dynamics of these interactions may more generally be altered by thermal environment. Obligate symbionts, those required by their host, are considered to represent a thermally sensitive weak point for their host, associated with accumulation of deleterious mutations. As such, these symbionts may represent an important determinant of host thermal envelope and spatial distribution. We then examine the varied relationship between thermal environment and the frequency of facultative symbionts that provide ecologically contingent benefits or act as parasites. We note that some facultative symbionts directly alter host thermotolerance. We outline how thermal environment will alter the benefits/costs of infection more widely, and additionally modulate vertical transmission efficiency. Multiple patterns are observed, with symbionts being cold sensitive in some species and heat sensitive in others, with varying and non-coincident thresholds at which phenotype and transmission are ablated. Nevertheless, it is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont–host interactions need to examine the interaction across a range of thermal environments. Finally, we discuss the importance of thermal sensitivity in predicting the success/failure of symbionts to spread into novel species following natural/engineered introduction

    PathEx: a novel multi factors based datasets selector web tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments have become very popular in life science research. However, if such experiments are only considered independently, the possibilities for analysis and interpretation of many life science phenomena are reduced. The accumulation of publicly available data provides biomedical researchers with a valuable opportunity to either discover new phenomena or improve the interpretation and validation of other phenomena that partially understood or well known. This can only be achieved by intelligently exploiting this rich mine of information.</p> <p>Description</p> <p>Considering that technologies like microarrays remain prohibitively expensive for researchers with limited means to order their own experimental chips, it would be beneficial to re-use previously published microarray data. For certain researchers interested in finding gene groups (requiring many replicates), there is a great need for tools to help them to select appropriate datasets for analysis. These tools may be effective, if and only if, they are able to re-use previously deposited experiments or to create new experiments not initially envisioned by the depositors. However, the generation of new experiments requires that all published microarray data be completely annotated, which is not currently the case. Thus, we propose the PathEx approach.</p> <p>Conclusion</p> <p>This paper presents PathEx, a human-focused web solution built around a two-component system: one database component, enriched with relevant biological information (expression array, omics data, literature) from different sources, and another component comprising sophisticated web interfaces that allow users to perform complex dataset building queries on the contents integrated into the PathEx database.</p
    corecore