10,992 research outputs found

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition

    Full text link
    The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated electron systems. In the past decade, much progress has been made on examining a particle-hole symmetric form of the transition in the Hubbard model with dynamical mean field theory where it was found that the electronic self energy develops a pole at the transition. We examine the particle-hole asymmetric metal-insulator transition in the Falicov-Kimball model, and find that a number of features change when the noninteracting density of states has a finite bandwidth. Since, generically particle-hole symmetry is broken in real materials, our results have an impact on understanding the metal-insulator transition in real materials.Comment: 5 pages, 3 figure

    Variational cluster approach to correlated electron systems in low dimensions

    Full text link
    A self-energy-functional approach is applied to construct cluster approximations for correlated lattice models. It turns out that the cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are limiting cases of a more general cluster method. Results for the one-dimensional Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change

    Cluster coherent potential approximation for electronic structure of disordered alloys

    Full text link
    We extend the single-site coherent potential approximation (CPA) to include the effects of non-local disorder correlations (alloy short-range order) on the electronic structure of random alloy systems. This is achieved by mapping the original Anderson disorder problem to that of a selfconsistently embedded cluster. This cluster problem is then solved using the equations of motion technique. The CPA is recovered for cluster size Nc=1N_{c}=1, and the disorder averaged density-of-states (DOS) is always positive definite. Various new features, compared to those observed in CPA, and related to repeated scattering on pairs of sites, reflecting the effect of SRO are clearly visible in the DOS. It is explicitly shown that the cluster-CPA method always yields positive-definite DOS. Anderson localization effects have been investigated within this approach. In general, we find that Anderson localization sets in before band splitting occurs, and that increasing partial order drives a continuous transition from an Anderson insulator to an incoherent metal.Comment: 7 pages, 6 figures. submitted to PR

    Exact Solution of a Electron System Combining Two Different t-J Models

    Full text link
    A new strongly correlated electron model is presented. This is formed by two types of sites: one where double occupancy is forbidden, as in the t-J model, and the other where double occupancy is allowed but vacancy is not allowed, as an inverse t-J model. The Hamiltonian shows nearest and next-to-nearest neighbour interactions and it is solved by means of a modified algebraic nested Bethe Ansatz. The number of sites where vacancy is not allowed, may be treated as a new parameter if the model is looked at as a t-J model with impurities. The ground and excited states are described in the thermodynamic limit.Comment: Some corrections and references added. To be published in J. Phys.

    Compressibility of the Two-Dimensional infinite-U Hubbard Model

    Full text link
    We study the interactions between the coherent quasiparticles and the incoherent Mott-Hubbard excitations and their effects on the low energy properties in the U=U=\infty Hubbard model. Within the framework of a systematic large-N expansion, these effects first occur in the next to leading order in 1/N. We calculate the scattering phase shift and the free energy, and determine the quasiparticle weight Z, mass renormalization, and the compressibility. It is found that the compressibility is strongly renormalized and diverges at a critical doping δc=0.07±0.01\delta_c=0.07\pm0.01. We discuss the nature of this zero-temperature phase transition and its connection to phase separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let

    Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Get PDF
    BackgroundRacetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.ObjectiveTo develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.MethodsTrack-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.ResultsMost dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.ConclusionsLaboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD).Potential relevanceDynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions

    Fractional Aharonov-Bohm effect in mesoscopic rings

    Full text link
    We study the effects of correlations on a one dimensional ring threaded by a uniform magnetic flux. In order to describe the interaction between particles, we work in the framework of the U \infty Hubbard and tt-JJ models. We focus on the dilute limit. Our results suggest the posibility that the persistent current has an anomalous periodicity ϕ0/p\phi_{0}/p, where pp is an integer in the range 2pNe2\leq p\leq N_{e} (NeN_{e} is the number of particles in the ring and ϕ0\phi_{0} is the flux quantum). We found that this result depends neither on disorder nor on the detailed form of the interaction, while remains the on site infinite repulsion.Comment: 14 pages (Revtex), 5 postscript figures. Send e-mail to: [email protected]

    A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors

    Full text link
    In the framework of a two-band model, we study the phase separation regime of different kinds of strongly correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow (wide) band simulates the more localized (more delocalized) type of charge carriers. By assuming that the internal chemical pressure on the CuO2_2 layer due to interlayer mismatch controls the energy splitting between the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping higher than 1/8 in the experimental pressure-doping-TcT_c phase diagram of cuprates at large microstrain as it appears in overoxygenated La2_2CuO4_4.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
    corecore