38,211 research outputs found

    Bose condensation in flat bands

    Full text link
    We derive effective Hamiltonians for lattice bosons with strong geometrical frustration of the kinetic energy by projecting the interactions on the flat lowest Bloch band. Specifically, we consider the Bose Hubbard model on the one dimensional sawtooth lattice and the two dimensional kagome lattice. Starting from a strictly local interaction the projection gives rise to effective long-range terms stabilizing a supersolid phase at densities above nu_c=1/9 of the kagome lattice. In the sawtooth lattice on the other hand we show that the solid order, which exists at the magic filling nu_c=1/4, is unstable to further doping. The universal low-energy properties at filling 1/4+delta nu are described by the well known commensurate-incommensurate transition. We support the analytic results by detailed numerical calculations using the Density Matrix Renormalization Group and exact diagonalization. Finally, we discuss possible realizations of the models using ultracold atoms as well as frustrated quantum magnets in high magnetic fields. We compute the momentum distribution and the noise correlations, that can be extracted from time of flight experiments or neutron scattering, and point to signatures of the unique supersolid phase of the kagome lattice.Comment: 18 pages, 13 figure

    Optical absorption preceding resonant double photoionization of aromatic hydrocarbons hydrocarbons

    Full text link
    We analyze resonances in the double photoionization of a variety of aromatic hydrocarbons. The resonances reflect the breakup of quasi-bound electron pairs. The basic premise of this paper is that there is a direct connection between the quasi-bound pairs and resonant peaks in the optical absorption that are associated with doubly occupied sites on the perimeter and inside the perimeter of the molecule. The optical absorption leading to the high-energy resonance (approximately 40 eV), calculated from a many-site one-dimensional Hubbard model, has a peak at U, the electrostatic interaction energy for two electrons with antiparallel spins on the same carbon atom. In the model, there are also two satellites whose separation from the main resonance is approximately +/-10 eV suggesting that unresolved satellite structure may be contributing to the linewidth of the resonant peak. The low energy resonances (approximately 10 eV) involve carbon atoms located inside the perimeter, a configuration present only in pyrene and coronene (among the hydrocarbons studied). In the case of pyrene, which has two carbon atoms inside the perimeter, we employ a two-site Hubbard model to characterize the absorption leading to the quasi-bound state. A brief analysis of the double photoionization resonance of the heterocyclic inorganic molecule 1,3,5-triazine presented. We also discuss recent results for the double photoionization of the cyclic inorganic molecule tribromoborazine and the organic molecules furan, pyrrole, selenophene, and thiophene where the 2+ ion concentration varies linearly with the difference between the photon energy and the threshold energy. A theory for the linear behavior is outlined

    Preservation of flavor in freeze dried green beans

    Get PDF
    Before freeze drying, green beans are heated to point at which their cell structure is altered. Beans freeze dried with altered cell structure have improved rehydration properties and retain color, flavor, and texture
    • …
    corecore