11,453 research outputs found

    A stacking method to study the gamma-ray emission of source samples based on the co-adding of Fermi LAT count maps

    Full text link
    We present a stacking method that makes use of co-added maps of gamma-ray counts produced from data taken with the Fermi Large Area Telescope. Sources with low integrated gamma-ray fluxes that are not detected individually may become detectable when their corresponding count maps are added. The combined data set is analyzed with a maximum likelihood method taking into account the contribution from point-like and diffuse background sources. For both simulated and real data, detection significance and integrated gamma-ray flux are investigated for different numbers of stacked sources using the public Fermi Science Tools for analysis and data preparation. The co-adding is done such that potential source signals add constructively, in contrast to the signals from background sources, which allows the stacked data to be described with simply structured models. We show, for different scenarios, that the stacking method can be used to increase the cumulative significance of a sample of sources and to characterize the corresponding gamma-ray emission. The method can, for instance, help to search for gamma-ray emission from galaxy clusters.Comment: accepted for publication in Astronomy & Astrophysics, 10 pages, 12 figure

    Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: Nano-rheology and determination of pore size distributions from the shape of imbibition fronts

    Full text link
    We present gravimetrical, optical, and neutron imaging measurements of the capillarity-driven infiltration of mesoporous silica glass by hydrocarbons. Square-root-of-time Lucas-Washburn invasion kinetics are found for linear alkanes from n-decane (C10) to n-hexacontane (C60) and for squalane, a branched alkane, in porous Vycor with 6.5 nm or 10 nm pore diameter, respectively. Humidity-dependent experiments allow us to study the influence on the imbibition kinetics of water layers adsorbed on the pore walls. Except for the longest molecule studied, C60, the invasion kinetics can be described by bulk fluidity and bulk capillarity, provided we assume a sticking, pore-wall adsorbed boundary layer, i.e. a monolayer of water covered by a monolayer of flat-laying hydrocarbons. For C60, however, an enhanced imbibition speed compared to the value expected in the bulk is found. This suggests the onset of velocity slippage at the silica walls or a reduced shear viscosity due to the transition towards a polymer-like flow in confined geometries. Both, light scattering and neutron imaging indicate a pronounced roughening of the imbibition fronts. Their overall shape and width can be resolved by neutron imaging. The fronts can be described by a superposition of independent wetting fronts moving with pore size-dependent square-root-of-time laws and weighted according to the pore size distributions obtained from nitrogen gas sorption isotherms. This finding indicates that the shape of the imbibition front in a porous medium, such as Vycor glass, with interconnected, elongated pores, is solely determined by independent movements of liquid menisci. These are dictated by the Laplace pressure and hydraulic permeability variations and thus the pore size variation at the invasion front. Our results suggest that pore size distributions can be derived from the broadening of imbibition fronts.Comment: 28 pages, 12 figures, pre-print, in pres

    A planetary eclipse map of CoRoT-2a. Comprehensive lightcurve modeling combining rotational-modulation and transits

    Full text link
    We analyze the surface structure of the planet host star CoRoT-2a using a consistent model for both the `global' (i.e., rotationally modulated) lightcurve and the transit lightcurves, using data provided by the CoRoT mission. Selecting a time interval covering two stellar rotations and six transits of the planetary companion CoRoT-2b, we adopt a `strip' model of the surface to reproduce the photometric modulation inside and outside the transits simultaneously. Our reconstructions show that it is possible to achieve appropriate fits for the entire sub-interval using a low-resolution surface model with 36 strips. The surface reconstructions indicate that the brightness on the eclipsed section of the stellar surface is (6 +/- 1) % lower than the average brightness of the remaining surface. This result suggests a concentration of stellar activity in a band around the stellar equator similar to the behavior observed on the Sun.Comment: accepted by A&A on 12/09/200

    Planetary eclipse mapping of CoRoT-2a. Evolution, differential rotation, and spot migration

    Full text link
    The lightcurve of CoRoT-2 shows substantial rotational modulation and deformations of the planet's transit profiles caused by starspots. We consistently model the entire lightcurve, including both rotational modulation and transits, stretching over approximately 30 stellar rotations and 79 transits. The spot distribution and its evolution on the noneclipsed and eclipsed surface sections are presented and analyzed, making use of the high resolution achievable under the transit path. We measure the average surface brightness on the eclipsed section to be (5\pm1) % lower than on the noneclipsed section. Adopting a solar spot contrast, the spot coverage on the entire surface reaches up to 19 % and a maximum of almost 40 % on the eclipsed section. Features under the transit path, i.e. close to the equator, rotate with a period close to 4.55 days. Significantly higher rotation periods are found for features on the noneclipsed section indicating a differential rotation of ΔΩ>0.1\Delta \Omega > 0.1. Spotted and unspotted regions in both surface sections concentrate on preferred longitudes separated by roughly 180 deg.Comment: Paper accepted by A&A 17/02/2010. For a better resolution paper please visit my homepage: http://www.hs.uni-hamburg.de/EN/Ins/Per/Huber/index.htm

    Recent developments in radiative B decays

    Full text link
    We report on recent theoretical progress in radiative B decays. We focus on a calculation of logarithmically enhanced QED corrections to the branching ratio and forward-backward asymmetry in the inclusive rare decay anti-B --> X(s) l+ l-, and present the results of a detailed phenomenological analysis. We also report on the calculation of NNLO QCD corrections to the inclusive decay anti-B --> X(s) gamma. As far as exclusive modes are concerned we consider transversity amplitudes and the impact of right-handed currents in the exclusive anti-B --> K^* l+ l- decay. Finally, we state results for exclusive B --> V gamma decays, notably the time-dependent CP-asymmetry in the exclusive B --> K^* gamma decay and its potential to serve as a so-called ``null test'' of the Standard Model, and the extraction of CKM and unitarity triangle parameters from B --> (rho,omega) gamma and B --> K^* gamma decays.Comment: 5 pages, 2 figures. Accepted for publication in the proceedings of International Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester, England, 19-25 Jul 200

    U.S. Supreme Court takes accessibility to a new level: Renewed Hope for the Americans with Disabilities Act

    Get PDF
    Gives an account of the U.S. Supreme Court case Tennessee vs. Lane, in which a paraplegic sued the State of Tennessee alleging that the lack of disabled access to the Polk County Courthouse violated the Americans with Disabilities Act (ADA)
    corecore