3,119 research outputs found

    Solution of the Thirring Model with Imaginary Mass and Massless Scattering

    Full text link
    The Thirring model with imaginary mass (or the sine-Gordon model with imaginary coupling) is deeply related to all the flows between minimal conformal theories. We solve this model explicitely using the Bethe ansatz. We find that there are Left and Right moving massless excitations with non trivial LR scattering. We compute the S matrix and recover the result conjectured by Fendley et al.Comment: 14 pages, 2 figures, uses harvmac macros. Preprint USC-94-00

    Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping

    Get PDF
    As a tide propagates into the estuary, river discharge affects tidal damping, primarily via a friction term, attenuating tidal motion by increasing the quadratic velocity in the numerator, while reducing the effective friction by increasing the water depth in the denominator. For the first time, we demonstrate a third effect of river discharge that may lead to the weakening of the channel convergence (i.e. landward reduction of channel width and/or depth). In this study, monthly averaged tidal water levels (2003–2014) at six gauging stations along the Yangtze River estuary are used to understand the seasonal behaviour of tidal damping and residual water level slope. Observations show that there is a critical value of river discharge, beyond which the tidal damping is reduced with increasing river discharge. This phenomenon is clearly observed in the upstream part of the Yangtze River estuary (between the Maanshan and Wuhu reaches), which suggests an important cumulative effect of residual water level on tide–river dynamics. To understand the underlying mechanism, an analytical model has been used to quantify the seasonal behaviour of tide–river dynamics and the corresponding residual water level slope under various external forcing conditions. It is shown that a critical position along the estuary.info:eu-repo/semantics/publishedVersio

    Saliency-Informed Spatio-Temporal Vector of Locally Aggregated Descriptors and Fisher Vector for Visual Action Recognition

    Get PDF
    Feature encoding has been extensively studied for the task of visual action recognition (VAR). The recently proposed super vector-based encoding methods, such as the Vector of Locally Aggregated Descriptors (VLAD) and the Fisher Vector (FV), have significantly improved the recognition performance. Despite of the success, they still struggle with the superfluous information that presents during the training stage, which makes the methods computationally expensive when applied to a large number of extracted features. In order to address such challenge, this paper proposes a Saliency-Informed Spatio-Temporal VLAD (SST-VLAD) approach which selects the extracted features corresponding to small amount of videos in the data set by considering both the spatial and temporal video-wise saliency scores; and the same extension principle has also been applied to the FV approach. The experimental results indicate that the proposed feature encoding scheme consistently outperforms the existing ones with significantly lower computational cost

    Frictional interactions between tidal constituents in tide-dominated estuaries

    Get PDF
    When different tidal constituents propagate along an estuary, they interact because of the presence of nonlinear terms in the hydrodynamic equations. In particular, due to the quadratic velocity in the friction term, the effective friction experienced by both the predominant and the minor tidal constituents is enhanced. We explore the underlying mechanism with a simple conceptual model by utilizing Chebyshev polynomials, enabling the effect of the velocities of the tidal constituents to be summed in the friction term and, hence, the linearized hydrodynamic equations to be solved analytically in a closed form. An analytical model is adopted for each single tidal constituent with a correction factor to adjust the linearized friction term, accounting for the mutual interactions between the different tidal constituents by means of an iterative procedure. The proposed method is applied to the Guadiana (southern Portugal-Spain border) and Guadalquivir (Spain) estuaries for different tidal constituents (M2, S2, N2, O1, K1) imposed independently at the estuary mouth. The analytical results appear to agree very well with the observed tidal amplitudes and phases of the different tidal constituents. The proposed method could be applicable to other alluvial estuaries with a small tidal amplitude-to-depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Comparison of [11C]TZ1964B and [18F]MNI659 for PET imaging brain PDE10A in nonhuman primates

    Get PDF
    Phosphodiesterase 10A (PDE10A) inhibitors show therapeutic effects for diseases with striatal pathology. PET radiotracers have been developed to quantify in vivo PDE10A levels and target engagement for therapeutic interventions. The aim of this study was to compare two potent and selective PDE10A radiotracers, [(11)C]TZ1964B and [(18)F]MNI659 in the nonhuman primate (NHP) brain. Double scans in the same cynomolgus monkey on the same day were performed after injection of [(11)C]TZ1964B and [(18)F]MNI659. Specific uptake was determined in two ways: nondisplaceable binding potential (BP(ND)) was calculated using cerebellum as the reference region and the PDE‐10A enriched striatum as the target region of interest (ROI); the area under the time–activity curve (AUC) for the striatum to cerebellum ratio was also calculated. High‐performance liquid chromatography (HPLC) analysis of solvent‐extracted NHP plasma identified the percentage of intact tracer versus radiolabeled metabolites samples post injection of each radiotracer. Both radiotracers showed high specific accumulation in NHP striatum. [(11)C]TZ1964B has higher striatal retention and lower specific striatal uptake than [(18)F]MNI659. The BP(ND) estimates of [(11)C]TZ1964B were 3.72 by Logan Reference model (LoganREF) and 4.39 by simplified reference tissue model (SRTM); the BP(ND) estimates for [(18)F]MNI659 were 5.08 (LoganREF) and 5.33 (SRTM). AUC ratios were 5.87 for [(11)C]TZ1964B and 7.60 for [(18)F]MNI659. Based on BP(ND) values in NHP striatum, coefficients of variation were ~10% for [(11)C]TZ1964B and ~30% for [(18)F]MNI659. Moreover, the metabolism study showed the percentage of parent compounds were ~70% for [(11)C]TZ1964B and ~50% for [(18)F]MNI659 60 min post injection. These data indicate that either [(11)C]TZ1964B or [(18)F]MNI659 could serve as suitable PDE10A PET radiotracers with distinguishing features for particular clinical application

    Interaction-based Human Activity Comparison

    Get PDF
    Traditional methods for motion comparison consider features from individual characters. However, the semantic meaning of many human activities is usually defined by the interaction between them, such as a high-five interaction of two characters. There is little success in adapting interaction-based features in activity comparison, as they either do not have a fixed topology or are in high dimensional. In this paper, we propose a unified framework for activity comparison from the interaction point of view. Our new metric evaluates the similarity of interaction by adapting the Earth Mover’s Distance onto a customized geometric mesh structure that represents spatial-temporal interactions. This allows us to compare different classes of interactions and discover their intrinsic semantic similarity. We created five interaction databases of different natures, covering both two characters (synthetic and real-people) and character-object interactions, which are open for public uses. We demonstrate how the proposed metric aligns well with the semantic meaning of the interaction. We also apply the metric in interaction retrieval and show how it outperforms existing ones. The proposed method can be used for unsupervised activity detection in monitoring systems and activity retrieval in smart animation systems

    Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    Full text link
    Spin dynamics of field-driven domain walls (DWs) guided by Permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of ten enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed.Comment: 8 pages, 5 figure
    corecore