52 research outputs found
Don't break a leg: Running birds from quail to ostrich prioritise leg safety and economy in uneven terrain
Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics
Recommended from our members
Don’t break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain
Cursorial ground birds are paragons of bipedal running that span a
500-fold mass range from quail to ostrich. Here we investigate the
task-level control priorities of cursorial birds by analysing how they
negotiate single-step obstacles that create a conflict between body
stability (attenuating deviations in body motion) and consistent leg
force–length dynamics (for economy and leg safety). We also test the
hypothesis that control priorities shift between body stability and leg
safety with increasing body size, reflecting use of active control to
overcome size-related challenges. Weight-support demands lead to
a shift towards straighter legs and stiffer steady gait with increasing
body size, but it remains unknown whether non-steady locomotor
priorities diverge with size. We found that all measured species used
a consistent obstacle negotiation strategy, involving unsteady body
dynamics to minimise fluctuations in leg posture and loading across
multiple steps, not directly prioritising body stability. Peak leg forces
remained remarkably consistent across obstacle terrain, within 0.35
body weights of level running for obstacle heights from 0.1 to 0.5
times leg length. All species used similar stance leg actuation
patterns, involving asymmetric force–length trajectories and posture-dependent
actuation to add or remove energy depending on landing
conditions. We present a simple stance leg model that explains key
features of avian bipedal locomotion, and suggests economy as a
key priority on both level and uneven terrain. We suggest that running
ground birds target the closely coupled priorities of economy and leg
safety as the direct imperatives of control, with adequate stability
achieved through appropriately tuned intrinsic dynamics.Keywords: Injury avoidance, Trajectory optimisation, Gait stability, Bipedal running, Ground birdsKeywords: Injury avoidance, Trajectory optimisation, Gait stability, Bipedal running, Ground bird
Recommended from our members
Swing-Leg Trajectory of Running Guinea Fowl Suggests Task-Level Priority of Force Regulation Rather than Disturbance Rejection
To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain
Design of the automated TV emission system
W pracy zaprezentowano wstępną koncepcję projektu zautomatyzowanego systemu emisji w regionalnym ośrodku TVP. W omawianym systemie, ciężar odpowiedzialności za emisję spoczywa na rozwiązaniach sprzętowych uzupełnionych warstwą programową, a zadaniem pracowników jest jedynie obsługa systemu i kontrola poprawności jego działania. Scharakteryzowano ponadto proces ewolucji systemów emisyjnych oraz profil ośrodka TVP3 w Krakowie i jego wymagania, a następnie szczegółowo omówiono założenia projektowanego systemu i możliwości jego wdrożenia.Design of the automated TV emission system for the regional TV center in Kraków has been considered in the paper. Development of the automated TV emission systems has been outline and the requirements of the regional TV center have been described. In the proposed system, the hardware solutions with complementary software bear the liability for the emission of TV signals and tasks of the staff concern only the maintenance and control of system operation. Implementation aspects of the system have been discussed too
DOWEX M 4195 and LEWATIT<sup>®</sup>MonoPlus TP 220 in Heavy Metal Ions Removal from Acidic Streams
Hybrid zero dynamics based multiple shooting optimization with applications to robotic walking
Hybrid zero dynamics (HZD) has emerged as a popular framework for the stable control of bipedal robotic gaits, but typically designing a gait's virtual constraints is a slow and undependable optimization process. To expedite and boost the reliability of HZD gait generation, we borrow methods from trajectory optimization to formulate a smoother and more linear optimization problem. We present a multiple-shooting formulation for the optimization of virtual constraints, combining the stability-friendly properties of HZD with an optimization-conducive problem formulation. To showcase the implications of this recipe for improving gait generation, we use the same process to generate periodic planar walking gaits on two different robot models, and in one case, demonstrate stable walking on the hardware prototype, DURUS-R
Hybrid zero dynamics based multiple shooting optimization with applications to robotic walking
Hybrid zero dynamics (HZD) has emerged as a popular framework for the stable control of bipedal robotic gaits, but typically designing a gait's virtual constraints is a slow and undependable optimization process. To expedite and boost the reliability of HZD gait generation, we borrow methods from trajectory optimization to formulate a smoother and more linear optimization problem. We present a multiple-shooting formulation for the optimization of virtual constraints, combining the stability-friendly properties of HZD with an optimization-conducive problem formulation. To showcase the implications of this recipe for improving gait generation, we use the same process to generate periodic planar walking gaits on two different robot models, and in one case, demonstrate stable walking on the hardware prototype, DURUS-R
- …
