2,466 research outputs found

    Rare dental trait provides morphological evidence of archaic introgression in Asian fossil record

    No full text
    The recently described Denisovan hemimandible from Xiahe, China [F. Chen et al., (2019) Nature 569, 409–412], possesses an unusual dental feature: a 3-rooted lower second molar. A survey of the clinical and bioarchaeological literature demonstrates that the 3-rooted lower molar is rare (less than 3.5% occurrence) in non-Asian Homo sapiens. In contrast, its presence in Asian-derived populations can exceed 40% in China and the New World. It has long been thought that the prevalence of 3-rooted lower molars in Asia is a relatively late acquisition occurring well after the origin and dispersal of H. sapiens. However, the presence of a 3-rooted lower second molar in this 160,000-y-old fossil hominin suggests greater antiquity for the trait. Importantly, it also provides morphological evidence of a strong link between archaic and recent Asian H. sapiens populations. This link provides compelling evidence that modern Asian lineages acquired the 3-rooted lower molar via introgression from Denisovans

    Unravelling the functional biomechanics of dental features and tooth wear

    Get PDF
    Most of the morphological features recognized in hominin teeth, particularly the topography of the occlusal surface, are generally interpreted as an evolutionary functional adaptation for mechanical food processing. In this respect, we can also expect that the general architecture of a tooth reflects a response to withstand the high stresses produced during masticatory loadings. Here we use an engineering approach, finite element analysis (FEA), with an advanced loading concept derived from individual occlusal wear information to evaluate whether some dental traits usually found in hominin and extant great ape molars, such as the trigonid crest, the entoconid-hypoconulid crest and the protostylid have important biomechanical implications. For this purpose, FEA was applied to 3D digital models of three Gorilla gorilla lower second molars (M2) differing in wear stages. Our results show that in unworn and slightly worn M2s tensile stresses concentrate in the grooves of the occlusal surface. In such condition, the trigonid and the entoconid-hypoconulid crests act to reinforce the crown locally against stresses produced along the mesiodistal groove. Similarly, the protostylid is shaped like a buttress to suffer the high tensile stresses concentrated in the deep buccal groove. These dental traits are less functional in the worn M2, because tensile stresses decrease physiologically in the crown with progressing wear due to the enlargement of antagonistic contact areas and changes in loading direction from oblique to nearly parallel direction to the dental axis. This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite stresses and reduce tooth failure throughout the lifetime of an individual

    The effectiveness of using carbonate isotope measurements of body tissues to infer diet in human evolution: Evidence from wild western chimpanzees (Pan troglodytes verus)*

    Get PDF
    Changes in diet throughout hominin evolution have been linked with important evolutionary changes. Stable carbon isotope analysis of inorganic apatite carbonate is the main isotopic method used to reconstruct fossil hominin diets; to test its effectiveness as a paleodietary indicator we present bone and enamel carbonate carbon isotope data from a well-studied population of modern wild western chimpanzees (Pan troglodytes verus) of known sex and age from Taï, Cote d'Ivoire.We found a significant effect of age class on bone carbonate values, with adult chimpanzees being more 13C- and 18O-depleted compared to juveniles. Further, to investigate habitat effects, we compared our data to existing apatite data on eastern chimpanzees (P. troglodytes schweinfurthii) and found that the Taï chimpanzees are significantly more depleted in enamel d13Cap and d18Oap compared to their eastern counterparts. Our data are the first to present a range of tissue-specific isotope data from the same group of wild western chimpanzees and, as such, add new data to the growing number of modern non-human primate comparative isotope datasets providing valuable information for the interpretation of diet throughout hominin evolution. By comparing our data to published isotope data on fossil hominins we found that our modern chimpanzee bone and enamel data support hypotheses that the trend towards increased consumption of C4 foods after 4 Ma (millions of years ago) is unique to hominins

    Pleistocene hominins as a resource for carnivores. A c. 500,000-year-old human femur bearing tooth-marks in North Africa (Thomas Quarry I, Morocco)

    Get PDF
    In many Middle Pleistocene sites, the co-occurrence of hominins with carnivores, who both contributed to faunal accumulations, suggests competition for resources as well as for living spaces. Despite this, there is very little evidence of direct interaction between them to-date. Recently, a human femoral diaphysis has been recognized in South-West of Casablanca (Morocco), in the locality called Thomas Quarry I. This site is famous for its Middle Pleistocene fossil hominins considered representatives of Homo rhodesiensis. The bone was discovered in Unit 4 of the Grotte à Hominidés (GH), dated to c. 500 ky and was associated with Acheulean artefacts and a rich mammalian fauna. Anatomically, it fits well within the group of known early Middle Pleistocene Homo, but its chief point of interest is that the diaphyseal ends display numerous tooth marks showing that it had been consumed shortly after death by a large carnivore, probably a hyena. This bone represents the first evidence of consumption of human remains by carnivores in the cave. Whether predated or scavenged, this chewed femur indicates that humans were a resource for carnivores, underlining their close relationships during the Middle Pleistocene in Atlantic Morocco

    Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees

    Get PDF
    Observations of hunting and meat eating in our closest living relatives, chimpanzees (Pan troglodytes), suggest that among primates, regular inclusion of meat in the diet is not a characteristic unique to Homo. Wild chimpanzees are known to consume vertebrate meat, but its actual dietary contribution is, depending on the study population, often either unknown or minimal. Constraints on continual direct observation throughout the entire hunting season mean that behavioral observations are limited in their ability to accurately quantify meat consumption. Here we present direct stable isotope evidence supporting behavioral observations of frequent meat eating among wild adult male chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d’Ivoire. Meat eating among some of the male chimpanzees is significant enough to result in a marked isotope signal detectable on a short-term basis in their hair keratin and long-term in their bone collagen. Although both adult males and females and juveniles derive their dietary protein largely from daily fruit and seasonal nut consumption, our data indicate that some adult males also derive a large amount of dietary protein from hunted meat. Our results reinforce behavioral observations of male-dominated hunting and meat eating in adult Taï chimpanzees, suggesting that sex differences in food acquisition and consumption may have persisted throughout hominin evolution, rather than being a recent development in the human lineage

    Recent origin of low trabecular bone density in modern humans

    Get PDF
    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations

    Morphology and function of Neandertal and modern human ear ossicles.

    Get PDF
    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor

    Self-reported bruxism mirrors anxiety and stress in adults

    Get PDF
    Objectives: The aims were to analyze whether the levels of self-reported bruxism and anxiety associate among otherwise healthy subjects, and to investigate the independent effects of anxiety and stress experience on the probability of self-reported bruxism. Study Design: As part of a study on irregular shift work, a questionnaire was mailed to all employees of the Finnish Broadcasting Company with irregular shift work (number of subjects: n=750) and to an equal number of randomly selected employees in the same company with regular eight-hour daytime work. Results: The response rates were 82.3% (56.6 % men) and 34.3 % (46.7 % men), respectively. Among the 874 respondents, those aware of more frequent bruxism reported significantly more severe anxiety (p<0.001). Adjusted by age and gender, frequent bruxers were more than two times more likely to report severe stress (odds ratio 2.5; 95% confidence interval 1.5-4.2) and anxiety (odds ratio 2.2; 95% confidence interval 1.3-3.6) than non-or-mild bruxers. Conclusions: Present findings suggest that self-reported bruxism and psychological states such as anxiety or stress may be related in working age subjects

    Premolar root and canal variation in South African Plio-Pleistocene specimens attributed to Australopithecus africanus and Paranthropus robustus

    Get PDF
    South African hominin fossils attributed to Australopithecus africanus derive from the cave sites of Makapansgat, Sterkfontein, and Taung, from deposits dated between about 2 and 3 million years ago (Ma), while Paranthropus robustus is known from Drimolen, Kromdraai, and Swartkrans, from deposits dated between about 1 and 2 Ma. Although variation in the premolar root complex has informed taxonomic and phylogenetic hypotheses for these fossil hominin species, traditionally there has been a focus on external root form, number, and position. In this study, we use microtomography to undertake the first comprehensive study of maxillary and mandibular premolar root and canal variation in Australopithecus africanus and Paranthropus robustus (n = 166 teeth) within and between the species. We also test for correlations between premolar size and root morphology as predicted under the ‘size/number continuum’ (SNC) model, which correlates increasing root number with tooth size. Our results demonstrate previously undocumented variation in these two fossil hominin species and highlight taxonomic differences in the presence and frequency of particular root types, qualitative root traits, and tooth size (measured as cervix cross-sectional area). Patterns of tooth size and canal/root number are broadly consistent with the SNC model, however statistically significant support is limited. The implications for hominin taxonomy in light of the increased variation in root morphology documented in this study are discussed

    The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant

    Get PDF
    The late Middle Palaeolithic (MP) settlement patterns in the Levant included the repeated use of caves and open landscape sites. The fossil record shows that two types of hominins occupied the region during this period - Neandertals and Homo sapiens. Until recently, diagnostic fossil remains were found only at cave sites. Because the two populations in this region left similar material cultural remains, it was impossible to attribute any open-air site to either species. In this study, we present newly discovered fossil remains from intact archaeological layers of the open-air site 'Ein Qashish, in northern Israel. The hominin remains represent three individuals: EQH1, a nondiagnostic skull fragment; EQH2, an upper right third molar (RM3); and EQH3, lower limb bones of a young Neandertal male. EQH2 and EQH3 constitute the first diagnostic anatomical remains of Neandertals at an open-air site in the Levant. The optically stimulated luminescence ages suggest that Neandertals repeatedly visited 'Ein Qashish between 70 and 60 ka. The discovery of Neandertals at open-air sites during the late MP reinforces the view that Neandertals were a resilient population in the Levant shortly before Upper Palaeolithic Homo sapiens populated the region
    corecore