866 research outputs found
High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland
Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role
Recommended from our members
A global bond: Explaining the safe-haven status of US Treasury securities
This article offers new theoretical and empirical insights to explain the resilience of US Treasury securities as the world’s premier safe or “risk-free” asset. The standard explanation of resilience emphasizes the relative safety of US Treasuries due to a shortage of safe assets in the global political economy. The analysis here goes beyond the standard explanation to highlight the importance of domestic politics in reinforcing the safe status of US Treasury securities. In particular, the research shows how a formidable “bond” of interests unites domestic and foreign owners of the public debt and works to sustain US power in global finance. Foreigners, who now own roughly half of the US public debt, have something to gain from their domestic counterparts. The top 1% of US households, which dominate domestic ownership of US Treasuries, has considerable political clout, thus alleviating foreign concerns about the creditworthiness of the US federal government. Domestic owners, in turn, benefit from the seemingly insatiable foreign appetite for US Treasury securities. In supplying the US federal government and US households with cheap credit, foreign investors in US Treasuries help to deflect challenges to the top 1% within the wealth and income hierarchy
Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary
In the 5 years since the 2010 Ajka red mud spill (Hungary), there have been 46 scientific studies assessing the key risks and impacts associated with the largest single release of bauxite-processing residue (red mud) to the environment. These studies have provided insight into the main environmental concerns, as well as the effectiveness of remedial efforts that can inform future management of red mud elsewhere. The key immediate risks after the spill were associated with the highly caustic nature of the red mud slurry and fine particle size, which once desiccated, could generate fugitive dust. Studies on affected populations showed no major hazards identified beyond caustic exposure, while red mud dust risks were considered equal to or lesser than those provided by urban dusts of similar particle size distribution. The longer-term environmental risks were related to the saline nature of the spill material (salinization of inundated soils) and the release and the potential cycling of oxyanion-forming metals and metalloids (e.g., Al, As, Cr, Mo, and V) in the soil–water environment. Of these, those that are soluble at high pH, inefficiently removed from solution during dilution and likely to be exchangeable at ambient pH are of chief concern (e.g., Mo and V). Various ecotoxicological studies have identified negative impacts of red mud-amended soils and sediments at high volumes (typically [5 %) on different test organisms, with some evidence of molecularlevel impacts at high dose (e.g., genotoxic effects on plants and mice). These data provide a valuable database to inform future toxicological studies for red mud. However, extensive management efforts in the aftermath of the spill greatly limited these exposure risks through leachate neutralization and red mud recovery from the affected land. Monitoring of affected soils, stream sediments, waters and aquatic biota (fungi, invertebrates and fish) have all shown a very rapid recovery toward prespill conditions. The accident also prompted research that has also highlighted potential benefits of red mud use for critical raw material recovery (e.g., Ga, Co, V, rare earths, inform), carbon sequestration, biofuel crop production, and use as a soil ameliorant
Uptake in cancer screening programmes:a priority in cancer control
Achieving adequate levels of uptake in cancer screening requires a variety of approaches that need to be shaped by the characteristics of both the screening programme and the target population. Strategies to improve uptake typically produce only incremental increases. Accordingly, approaches that combine behavioural, organisational and other strategies are most likely to succeed. In conjunction with a focus on uptake, providers of screening services need to promote informed decision making among invitees. Addressing inequalities in uptake must remain a priority for screening programmes. Evidence informing strategies targeting low-uptake groups is scarce, and more research is needed in this area. Cancer screening has the potential to make a major contribution to early diagnosis initiatives in the United Kingdom, and will best be achieved through uptake strategies that emphasise wide coverage, informed choice and equitable distribution of cancer screening services
The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages
We quantified the role of a main food
resource, sedimenting organic matter (SOM), relative
to oxygen (DO) and temperature (TEMP) in structuring
profundal macroinvertebrate assemblages in
boreal lakes. SOM from 26 basins of 11 Finnish lakes
was analysed for quantity (sedimentation rates),
quality (C:N:P stoichiometry) and origin (carbon
stable isotopes, d13C). Hypolimnetic oxygen and
temperature were measured from each site during
summer stratification. Partial canonical correspondence
analysis (CCA) and partial regression analyses
were used to quantify contributions of SOM, DO and
TEMP to community composition and three macroinvertebrate
metrics. The results suggested a major
contribution of SOM in regulating the community
composition and total biomass. Oxygen best explained
the Shannon diversity, whereas TEMP had largest
contribution to the variation of Benthic Quality Index.
Community composition was most strongly related to d13C of SOM. Based on additional d13C and stoichiometric
analyses of chironomid taxa, marked differences
were apparent in their utilization of SOM and
body stoichiometry; taxa characteristic of oligotrophic
conditions exhibited higher C:N ratios and lower C:P
and N:P ratios compared to the species typical of
eutrophic lakes. The results highlight the role of SOM
in regulating benthic communities and the distributions
of individual species, particularly in oligotrophic
systems
AMPK:a nutrient and energy sensor that maintains energy homeostasis
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability
Recommended from our members
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field
Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities
Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification.
Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc.
Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported â from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese
Foundation for Science and Technology (FCT) through the project EPIDisc
(UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International
Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program.
The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/
2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are
also greatly acknowledged.info:eu-repo/semantics/publishedVersio
Mineralogical attenuation for metallic remediation in a passive system for mine water treatment
Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes.
This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands.
The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate.
Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 μm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study.
The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a Ciência e a Tecnologia (FCT
- …
