25,819 research outputs found
Detection of X-ray periodicity from a new eclipsing polar candidate XGPS-I J183251-100106
We report the results from a detailed analysis of an archival XMM-Newton
observation of the X-ray source XGPS-I J183251-100106, which has been suggested
as a promising magnetic cataclysmic variable candidate based on its optical
properties. A single periodic signal of 1.5 hrs is detected from all EPIC
cameras on board XMM-Newton. The phase-averaged X-ray spectrum can be
well-modeled with a thermal bremsstrahlung of a temperature kT~50 keV. Both
X-ray spectral and temporal behavior of this system suggest it as a eclipsing
cataclysmic variable of AM Herculis (or polar) type.Comment: 15 pages, 6 figures, accepted for publication in Ap
Radio Variability of Sagittarius A* - A 106 Day Cycle
We report the presence of a 106-day cycle in the radio variability of Sgr A*
based on an analysis of data observed with the Very Large Array (VLA) over the
past 20 years. The pulsed signal is most clearly seen at 1.3 cm with a ratio of
cycle frequency to frequency width f/Delta_f= 2.2+/-0.3. The periodic signal is
also clearly observed at 2 cm. At 3.6 cm the detection of a periodic signal is
marginal. No significant periodicity is detected at both 6 and 20 cm. Since the
sampling function is irregular we performed a number of tests to insure that
the observed periodicity is not the result of noise. Similar results were found
for a maximum entropy method and periodogram with CLEAN method. The probability
of false detection for several different noise distributions is less than 5%
based on Monte Carlo tests. The radio properties of the pulsed component at 1.3
cm are spectral index alpha ~ 1.0+/- 0.1 (for S nu^alpha), amplitude Delta
S=0.42 +/- 0.04 Jy and characteristic time scale Delta t_FWHM ~ 25 +/- 5 days.
The lack of VLBI detection of a secondary component suggests that the
variability occurs within Sgr A* on a scale of ~5 AU, suggesting an instability
of the accretion disk.Comment: 14 Pages, 3 figures. ApJ Lett 2000 accepte
VERITAS Distant Laser Calibration and Atmospheric Monitoring
As a calibrated laser pulse propagates through the atmosphere, the intensity
of the Rayleigh scattered light arriving at the VERITAS telescopes can be
calculated precisely. This allows for absolute calibration of imaging
atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In
these proceedings, we present the comparison between laser data and simulation
to estimate the light collection efficiencies of the VERITAS telescopes, and
the analysis of multiple laser data sets taken in different months for
atmospheric monitoring purpose.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium
on High Energy Gamma-Ray Astronomy 2008
A minimal model for excitons within time-dependent density-functional theory
The accurate description of the optical spectra of insulators and
semiconductors remains an important challenge for time-dependent
density-functional theory (TDDFT). Evidence has been given in the literature
that TDDFT can produce bound as well as continuum excitons for specific
systems, but there are still many unresolved basic questions concerning the
role of dynamical exchange and correlation (xc). In particular, the role of the
long spatial range and the frequency dependence of the xc kernel
for excitonic binding are still not very well explored. We present a minimal
model for excitons in TDDFT, consisting of two bands from a one-dimensional
Kronig-Penney model and simple approximate xc kernels, which allows us to
address these questions in a transparent manner. Depending on the system, it is
found that adiabatic xc kernels can produce a single bound exciton, and
sometimes two bound excitons, where the long spatial range of is
not a necessary condition. It is shown how the Wannier model, featuring an
effective electron-hole interaction, emerges from TDDFT. The collective,
many-body nature of excitons is explicitly demonstrated.Comment: 12 pages, 11 figure
The Origin of Gamma-Rays from Globular Clusters
Fermi has detected gamma-ray emission from eight globular clusters. We
suggest that the gamma-ray emission from globular clusters may result from the
inverse Compton scattering between relativistic electrons/positrons in the
pulsar wind of MSPs in the globular clusters and background soft photons
including cosmic microwave/relic photons, background star lights in the
clusters, the galactic infrared photons and the galactic star lights. We show
that the gamma-ray spectrum from 47 Tuc can be explained equally well by upward
scattering of either the relic photons, the galactic infrared photons or the
galactic star lights whereas the gamma-ray spectra from other seven globular
clusters are best fitted by the upward scattering of either the galactic
infrared photons or the galactic star lights. We also find that the observed
gamma-ray luminosity is correlated better with the combined factor of the
encounter rate and the background soft photon energy density. Therefore the
inverse Compton scattering may also contribute to the observed gamma-ray
emission from globular clusters detected by Fermi in addition to the standard
curvature radiation process. Furthermore, we find that the emission region of
high energy photons from globular cluster produced by inverse Compton
scattering is substantially larger than the core of globular cluster with a
radius >10pc. The diffuse radio and X-rays emitted from globular clusters can
also be produced by synchrotron radiation and inverse Compton scattering
respectively. We suggest that future observations including radio, X-rays, and
gamma-rays with energy higher than 10 GeV and better angular resolution can
provide better constraints for the models.Comment: Accepted by ApJ, Comments may send to Prof. K.S. Cheng:
[email protected]
Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925
We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR
J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is
consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded
light curve has a sinusoidal structure which is different from the
double-peaked gamma-ray pulse profile. We have also analysed the X-ray
phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is
thermal dominant. This suggests the X-ray pulsation mainly originates from the
modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752
Globular clusters (GCs) are emerging as a new class of gamma-ray emitters,
thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now,
eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the
stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs
out of all known GCs that have not been studied in details before. In this
paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC
6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and
NGC 6541, in which gamma-rays were found within the GC tidal radius. With one
of the highest metallicity among all GCs in the Milky Way, the gamma-ray
luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs.
In addition, we confirm a previous report of significant gamma-ray emitting
region next to NGC 6441. We briefly discuss the observed offset of gamma-rays
from some GC cores. The increasing number of known gamma-ray GCs at distances
out to ~10 kpc is important for us to understand the gamma-ray emitting
mechanism and provides an alternative probe to the underlying millisecond
pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres
A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837
We report on the first NuSTAR observation of the gamma-ray emitting
millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is
clearly detected and the simultaneous NuSTAR and Swift spectrum is well
described by an absorbed power-law with a photon index of ~1.3. We also find
X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at
the 14.8-hr binary orbital period. All these are entirely consistent with
previous X-ray observations below 10 keV. This new hard X-ray observation of
PSR J1723-2837 provides strong evidence that the X-rays are from the
intrabinary shock via an interaction between the pulsar wind and the outflow
from the companion star. We discuss how the NuSTAR observation constrains the
physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure
- …
