2,495 research outputs found
Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation.
Advances in genomic profiling present new challenges of explaining how changes in DNA and RNA are translated into proteins linking genotype to phenotype. Here we compare the genome-scale proteomic and transcriptomic changes in human primary haematopoietic stem/progenitor cells and erythroid progenitors, and uncover pathways related to mitochondrial biogenesis enhanced through post-transcriptional regulation. Mitochondrial factors including TFAM and PHB2 are selectively regulated through protein translation during erythroid specification. Depletion of TFAM in erythroid cells alters intracellular metabolism, leading to elevated histone acetylation, deregulated gene expression, and defective mitochondria and erythropoiesis. Mechanistically, mTORC1 signalling is enhanced to promote translation of mitochondria-associated transcripts through TOP-like motifs. Genetic and pharmacological perturbation of mitochondria or mTORC1 specifically impairs erythropoiesis in vitro and in vivo. Our studies support a mechanism for post-transcriptional control of erythroid mitochondria and may have direct relevance to haematologic defects associated with mitochondrial diseases and ageing
On single and double soft behaviors in NLSM
In this paper, we study the single and double soft behaviors of tree level
off-shell currents and on-shell amplitudes in nonlinear sigma model(NLSM). We
first propose and prove the leading soft behavior of the tree level currents
with a single soft particle. In the on-shell limit, this single soft emission
becomes the Adler's zero. Then we establish the leading and sub-leading soft
behaviors of tree level currents with two adjacent soft particles. With a
careful analysis of the on-shell limit, we obtain the double soft behaviors of
on-shell amplitudes where the two soft particles are adjacent to each other. By
applying Kleiss-Kuijf (KK) relation, we further obtain the leading and
sub-leading behaviors of amplitudes with two nonadjacent soft particles.Comment: 41 pages, 6 tables, 9 figures, minor revised, more content about
nonadjacent double soft limit, update the reference
Asymmetric localization of DLC1 defines avian trunk neural crest polarity for directional delamination and migration
Following epithelial-mesenchymal transition, acquisition of avian trunk neural crest cell (NCC) polarity is prerequisite for directional delamination and migration, which in turn is essential for peripheral nervous system development. However, how this cell polarization is established and regulated remains unknown. Here we demonstrate that, using the RHOA biosensor in vivo and in vitro, the initiation of NCC polarization is accompanied by highly activated RHOA in the cytoplasm at the cell rear and its fluctuating activity at the front edge. This differential RHOA activity determines polarized NC morphology and motility, and is regulated by the asymmetrically localized RhoGAP Deleted in liver cancer (DLC1) in the cytoplasm at the cell front. Importantly, the association of DLC1 with NEDD9 is crucial for its asymmetric localization and differential RHOA activity. Moreover, NC specifiers, SOX9 and SOX10, regulate NEDD9 and DLC1 expression, respectively. These results present a SOX9/SOX10-NEDD9/DLC1-RHOA regulatory axis to govern NCC migratory polarization.published_or_final_versio
Use of biologics for inflammatory bowel disease in Hong Kong: consensus statement
published_or_final_versio
CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis
Macrophages abundantly found in the tumor microenvironment enhance malignancy(1). At metastatic sites a distinct population of metastasis associated macrophages (MAMs) promote tumor cell extravasation, seeding and persistent growth(2). Our study has defined the origin of these macrophages by showing Gr1+ inflammatory monocytes (IMs) are preferentially recruited to pulmonary metastases but not primary mammary tumors, a process also found for human IMs in pulmonary metastases of human breast cancer cells. The recruitment of these CCR2 (receptor for chemokine CCL2) expressing IMs and subsequently MAMs and their interaction with metastasizing tumor cells is dependent on tumor and stromal synthesized CCL2 (FigS1). Inhibition of CCL2/CCR2 signaling using anti-CCL2 antibodies blocks IM recruitment and inhibits metastasis in vivo and prolongs the survival of tumor-bearing mice. Depletion of tumor cell-derived CCL2 also inhibits metastatic seeding. IMs promote tumor cell extravasation in a process that requires monocyte-derived VEGF. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer (Fig S2)(3-6). Our data provides the mechanistic link between these two clinical associations and indicates new therapeutic targets for treating metastatic breast disease
Wireless battery charger for ev with circular or planar coils: comparison
This paper presents the experimental results obtained in the wireless energy transfer system prototype based on circular or planar coils. With these experimental results we can choose the tuning settings to improve the power transmission efficiency in wireless energy transfer systems. In wireless energy transfer for electric vehicle batteries charging, the coil shape and the range between the coils are the most important issues of those systems
A Tunable Two-impurity Kondo system in an atomic point contact
Two magnetic atoms, one attached to the tip of a Scanning Tunneling
Microscope (STM) and one adsorbed on a metal surface, each constituting a Kondo
system, have been proposed as one of the simplest conceivable systems
potentially exhibiting quantum critical behaviour. We have succeeded in
implementing this concept experimentally for cobalt dimers clamped between an
STM tip and a gold surface. Control of the tip-sample distance with
sub-picometer resolution allows us to tune the interaction between the two
cobalt atoms with unprecedented precision. Electronic transport measurements on
this two-impurity Kondo system reveal a rich physical scenario which is
governed by a crossover from local Kondo screening to non-local singlet
formation due to antiferromagnetic coupling as a function of separation of the
cobalt atoms.Comment: 22 pages, 5 figure
Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen
Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment
Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma
Copyright @ 2013 Macmillan Publishers Limited. This is the author's accepted manuscript. The final published article is available from the link below.Regulation of cell survival is a key part of the pathogenesis of multiple myeloma (MM). Jun N-terminal kinase (JNK) signaling has been implicated in MM pathogenesis, but its function is unclear. To elucidate the role of JNK in MM, we evaluated the specific functions of the two major JNK proteins, JNK1 and JNK2. We show here that JNK2 is constitutively activated in a panel of MM cell lines and primary tumors. Using loss-of-function studies, we demonstrate that JNK2 is required for the survival of myeloma cells and constitutively suppresses JNK1-mediated apoptosis by affecting expression of poly(ADP-ribose) polymerase (PARP)14, a key regulator of B-cell survival. Strikingly, we found that PARP14 is highly expressed in myeloma plasma cells and associated with disease progression and poor survival. Overexpression of PARP14 completely rescued myeloma cells from apoptosis induced by JNK2 knockdown, indicating that PARP14 is critically involved in JNK2-dependent survival. Mechanistically, PARP14 was found to promote the survival of myeloma cells by binding and inhibiting JNK1. Moreover, inhibition of PARP14 enhances the sensitization of MM cells to anti-myeloma agents. Our findings reveal a novel regulatory pathway in myeloma cells through which JNK2 signals cell survival via PARP14, and identify PARP14 as a potential therapeutic target in myeloma.Kay Kendall Leukemia Fund, NIH, Cancer Research UK, Italian Association for Cancer Research and the Foundation for Liver Research
Hidden conformal symmetry of extreme and non-extreme Einstein-Maxwell-Dilaton-Axion black holes
The hidden conformal symmetry of extreme and non-extreme
Einstein-Maxwell-Dilaton-Axion (EMDA) black holes is addressed in this paper.
For the non-extreme one, employing the wave equation of massless scalars, the
conformal symmetry with left temperature and right
temperature in the near region is
found. The conformal symmetry is spontaneously broken due to the periodicity of
the azimuthal angle. The microscopic entropy is derived by the Cardy formula
and is fully in consistence with the Bekenstein-Hawking area-entropy law. The
absorption cross section in the near region is calculated and exactly equals
that in a 2D CFT. For the extreme case, by redefining the conformal
coordinates, the duality between the solution space and CFT is studied. The
microscopic entropy is found to exactly agree with the area-entropy law.Comment: V3, typos corrected, version to appear in JHE
- …
