1,330 research outputs found
"Faith Maturity Scale" for Chinese: A Revision and Construct Validation
Using a large sample of Chinese Christians (n = 2,196), we examined the internal structure, reliability, and validity of the Faith Maturity Scale (FMS). Despite its being developed in North America, and for a mainline Protestant population, the FMS was shown to have validity among non-Western, non-mainline Protestants. There is convergent validity with self-reported religious practices and a belief measure of religiosity. Our analyses also confirmed good construct validity with the Big Five personality dimensions, social axioms, attributional style, and quality of life. FMS remained associated with religious practices and high quality of life after personality was statistically controlled. Findings supported that the Chinese version of the FMS assesses the same theoretical construct as does the original scale and that the distinction between the vertical and horizontal dimensions of faith maturity is meaningful. © 2011 Copyright Taylor and Francis Group, LLC.postprin
Ultrasonic-aided fabrication of gold nanofluids
A novel ultrasonic-aided one-step method for the fabrication of gold nanofluids is proposed in this study. Both spherical- and plate-shaped gold nanoparticles (GNPs) in the size range of 10-300 nm are synthesized. Subsequent purification produces well-controlled nanofluids with known solid and liquid contents. The morphology and properties of the nanoparticle and nanofluids are characterized by transmission electron microscopy, scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction spectroscopy, and dynamic light scattering, as well as effective thermal conductivities. The ultrasonication technique is found to be a very powerful tool in engineering the size and shape of GNPs. Subsequent property measurement shows that both particle size and particle shape play significant roles in determining the effective thermal conductivity. A large increase in effective thermal conductivity can be achieved (approximately 65%) for gold nanofluids using plate-shaped particles under low particle concentrations (i.e.764 μM/L)
Lethal zoonotic coronavirus infections of humans - comparative phylogenetics, epidemiology, transmission, and clinical features of coronavirus disease 2019, The Middle East respiratory syndrome and severe acute respiratory syndrome
Purpose of review:
Severe acute respiratory syndrome-coronaviruses-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), emerged as a new zoonotic pathogen of humans at the end of 2019 and rapidly developed into a global pandemic. Over 106 million COVID-19 cases including 2.3 million deaths have been reported to the WHO as of February 9, 2021. This review examines the epidemiology, transmission, clinical features, and phylogenetics of three lethal zoonotic coronavirus infections of humans: SARS-CoV-1, SARS-CoV-2, and The Middle East respiratory syndrome coronavirus (MERS-COV).
Recent findings:
Bats appear to be the common natural source of SARS-like CoV including SARS-CoV-1 but their role in SARS-CoV-2 and MERS-CoV remains unclear. Civet cats and dromedary camels are the intermediary animal sources for SARS-CoV-1 and MERS-CoV infection, respectively whereas that of SARS-CoV-2 remains unclear. SARS-CoV-2 viral loads peak early on days 2–4 of symptom onset and thus high transmission occurs in the community, and asymptomatic and presymptomatic transmission occurs commonly. Nosocomial outbreaks are hallmarks of SARS-CoV-1 and MERS-CoV infections whereas these are less common in COVID-19. Several COVID-19 vaccines are now available.
Summary:
Of the three lethal zoonotic coronavirus infections of humans, SARS-CoV-2 has caused a devastating global pandemic with over a million deaths. The emergence of genetic variants, such as D614G, N501Y (variants 1 and 2), has led to an increase in transmissibility and raises concern about the possibility of re-infection and impaired vaccine response. Continued global surveillance is essential for both SARS-CoV-2 and MERS-CoV, to monitor changing epidemiology due to viral variants
De ja vu? Post-COVID-19 Surge in Respiratory Illnesses Among Children in China Emphasizes Need for Proactive Surveillance, Openness, Early Detection and Reporting of Causative Pathogen(s), and Their AMR Status
Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions
The rise of topological phases of matter is strongly connected to their
potential to host Majorana bound states, a powerful ingredient in the search
for a robust, topologically protected, quantum information processing. In order
to produce such states, a method of choice is to induce superconductivity in
topological insulators. The engineering of the interplay between
superconductivity and the electronic properties of a topological insulator is a
challenging task and it is consequently very important to understand the
physics of simple superconducting devices such as Josephson junctions, in which
new topological properties are expected to emerge. In this article, we review
recent experiments investigating topological superconductivity in topological
insulators, using microwave excitation and detection techniques. More
precisely, we have fabricated and studied topological Josephson junctions made
of HgTe weak links in contact with two Al or Nb contacts. In such devices, we
have observed two signatures of the fractional Josephson effect, which is
expected to emerge from topologically-protected gapless Andreev bound states.
We first recall the theoretical background on topological Josephson junctions,
then move to the experimental observations. Then, we assess the topological
origin of the observed features and conclude with an outlook towards more
advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017,
published in "Topological Matter. Springer Series in Solid-State Sciences,
vol 190. Springer
Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols
10.1371/journal.pone.0059970PLoS ONE84
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
Confronting the persisting threat of the Middle East respiratory syndrome to global health security
- …
