31,821 research outputs found
Correlated versus Ferromagnetic State in Repulsively Interacting Two-Component Fermi Gases
Whether a spin-1/2 Fermi gas will become ferromagnetic as the strength of
repulsive interaction increases is a long-standing controversial issue.
Recently this problem is studied experimentally by Jo et al, Science, 325, 1521
(2009) in which the authors claim a ferromagnetic transition is observed. This
work is to point out the results of this experiment can not distinguish whether
the system is in a ferromagnetic state or in a non-magnetic but strongly
short-range correlated state. A conclusive experimental demonstration of
ferromagnetism relies on the observation of ferromagnetic domains.Comment: 4 pages, 2 figures, published versio
Reducing the bias of the maximum likelihood estimator for the Poisson regression model
We derive expressions for the first-order bias of the MLE for a Poisson regression model and show how these can be used to adjust the estimator and reduce bias without increasing MSE. The analytic results are supported by Monte Carlo simulations and three illustrative empirical applications.Poisson regression, maximum likelihood estimation, bias reduction
On-Shell Gauge Invariant Three-Point Amplitudes
Assuming locality, Lorentz invariance and parity conservation we obtain a set
of differential equations governing the 3-point interactions of massless
bosons, which in turn determines the polynomial ring of these amplitudes. We
derive all possible 3-point interactions for tensor fields with polarisations
that have total symmetry and mixed symmetry under permutations of Lorentz
indices. Constraints on the existence of gauge-invariant cubic vertices for
totally symmetric fields are obtained in general spacetime dimensions and are
compared with existing results obtained in the covariant and light-cone
approaches. Expressing our results in spinor helicity formalism we reproduce
the perhaps mysterious mismatch between the covariant approach and the light
cone approach in 4 dimensions. Our analysis also shows that there exists a
mismatch, in the 3-point gauge invariant amplitudes corresponding to cubic
self-interactions, between a scalar field and an antisymmetric rank-2
tensor field . Despite the well-known fact that in 4 dimensions
rank-2 anti-symmetric fields are dual to scalar fields in free theories, such
duality does not extend to interacting theories.Comment: significantly revised, final version published in JHE
A simple minimax estimator for quantum states
Quantum tomography requires repeated measurements of many copies of the
physical system, all prepared by a source in the unknown state. In the limit of
very many copies measured, the often-used maximum-likelihood (ML) method for
converting the gathered data into an estimate of the state works very well. For
smaller data sets, however, it often suffers from problems of rank deficiency
in the estimated state. For many systems of relevance for quantum information
processing, the preparation of a very large number of copies of the same
quantum state is still a technological challenge, which motivates us to look
for estimation strategies that perform well even when there is not much data.
In this article, we review the concept of minimax state estimation, and use
minimax ideas to construct a simple estimator for quantum states. We
demonstrate that, for the case of tomography of a single qubit, our estimator
significantly outperforms the ML estimator for small number of copies of the
state measured. Our estimator is always full-rank, and furthermore, has a
natural dependence on the number of copies measured, which is missing in the ML
estimator.Comment: 26 pages, 3 figures. v2 contains minor improvements to the text, and
an additional appendix on symmetric measurement
A Geometrical Test of the Cosmological Energy Contents Using the Lyman-alpha Forest
In this Letter we explore a version of the test of cosmological geometry
proposed by Alcock and Paczynski (1979), using observations of the Lyman-alpha
forest in the spectra of close quasar pairs. By comparing the correlations in
absorption in one quasar spectrum with correlations between the spectra of
neighboring quasars one can determine the relation of the redshift distance
scale to the angle distance scale at the redshift of the absorbers, . Since this relationship depends on the parameters of the cosmological
model, these parameters may be determined using the Lyman-alpha forest. While
this test is relatively insensitive to the density parameter in a
dust-dominated universe, it is more sensitive to the presence of a matter
component with large negative pressure (such as a cosmological constant
) and its equation of state. With only 25 pairs of quasar spectra at
angular separations , one can discriminate between an open universe () and an flat
(-dominated) universe at the level. The S/N can be enhanced
by considering quasar pairs at smaller angular separations, but requires proper
modeling of nonlinear redshift space distortions. Here the correlations and
redshift space distortions are modeled using linear theory.Comment: 13 pages, 2 ps figures, submitted to ApJ
Negative electronic compressibility enables electrically-induced charge density waves in a two-dimensional electron liquid
We show that the negative electronic compressibility of two-dimensional
electronic systems at sufficiently low density enables the generation of charge
density waves through the application of a uniform force field, provided no
current is allowed to flow. The wavelength of the density oscillations is
controlled by the magnitude of the (negative) screening length, and their
amplitude is proportional to the applied force. Both are electrically tunable.Comment: 4 pages, 5 figure
Reduced chemistry for butanol isomers at engine-relevant conditions
Butanol has received significant research attention as a second-generation
biofuel in the past few years. In the present study, skeletal mechanisms for
four butanol isomers were generated from two widely accepted, well-validated
detailed chemical kinetic models for the butanol isomers. The detailed models
were reduced using a two-stage approach consisting of the directed relation
graph with error propagation and sensitivity analysis. During the reduction
process, issues were encountered with pressure-dependent reactions formulated
using the logarithmic pressure interpolation approach; these issues are
discussed and recommendations made to avoid ambiguity in its future
implementation in mechanism development. The performance of the skeletal
mechanisms generated here was compared with that of detailed mechanisms in
simulations of autoignition delay times, laminar flame speeds, and perfectly
stirred reactor temperature response curves and extinction residence times,
over a wide range of pressures, temperatures, and equivalence ratios. The
detailed and skeletal mechanisms agreed well, demonstrating the adequacy of the
resulting reduced chemistry for all the butanol isomers in predicting global
combustion phenomena. In addition, the skeletal mechanisms closely predicted
the time-histories of fuel mass fractions in homogeneous compression-ignition
engine simulations. The performance of each butanol isomer was additionally
compared with that of a gasoline surrogate with an antiknock index of 87 in a
homogeneous compression-ignition engine simulation. The gasoline surrogate was
consumed faster than any of the butanol isomers, with tert-butanol exhibiting
the slowest fuel consumption rate. While n-butanol and isobutanol displayed the
most similar consumption profiles relative to the gasoline surrogate, the two
literature chemical kinetic models predicted different orderings.Comment: 39 pages, 16 figures. Supporting information available via
https://doi.org/10.1021/acs.energyfuels.6b0185
First-Principle Wannier function analysis of the electronic structure of PdTe: Weaker magnetism and superconductivity
We report a first-principles Wannier function study of the electronic
structure of PdTe. Its electronic structure is found to be a broad
three-dimensional Fermi surface with highly reduced correlations effects. In
addition, the higher filling of the Pd -shell, its stronger covalency
resulting from the closer energy of the Pd- and Te- shells, and the
larger crystal field effects of the Pd ion due to its near octahedral
coordination all serve to weaken significantly electronic correlations in the
particle-hole (spin, charge, and orbital) channel. In comparison to the Fe
Chalcogenide e.g., FeSe, we highlight the essential features
(quasi-two-dimensionality, proximity to half-filling, weaker covalency, and
higher orbital degeneracy) of Fe-based high-temperature superconductors.Comment: 5 Pages, 3 Figure
Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals
We report on giant circular dichroism (CD) of a molecule inserted into a
plasmonic hot spot. Naturally occurring molecules and biomolecules have
typically CD signals in the UV range, whereas plasmonic nanocrystals exhibit
strong plasmon resonances in the visible spectral interval. Therefore,
excitations of chiral molecules and plasmon resonances are typically
off-resonant. Nevertheless, we demonstrate theoretically that it is possible to
create strongly-enhanced molecular CD utilizing the plasmons. This task is
doubly challenging since it requires both creation and enhancement of the
molecular CD in the visible region. We demonstrate this effect within the model
which incorporates a chiral molecule and a plasmonic dimer. The associated
mechanism of plasmonic CD comes from the Coulomb interaction which is greatly
amplified in a plasmonic hot spot.Comment: Manuscript: 4+pages, 4 figures; Supplemental_Material: 10 pages, 7
figure
- …
