31,054 research outputs found
Theoretical Study on Rotational Bands and Shape Coexistence of {Tl} in the Particle Triaxial-Rotor Model
By taking the particle triaxial-rotor model with variable moment of inertia,
we investigate the energy spectra, the deformations and the single particle
configurations of the nuclei Tl systemically. The calculated
energy spectra agree with experimental data quite well. The obtained results
indicate that the aligned bands observed in Tl originate from
the , , proton
configuration coupled to a prolate deformed core, respectively. Whereas, the
negative parity bands built upon the isomeric states in
Tl are formed by a proton with the
configuration coupled to a core with triaxial oblate deformation, and the
positive parity band on the isomeric state in Tl is
generated by a proton with configuration coupled to a
triaxial oblate core.Comment: 16 pages, 5 figures. To appear in Physical Review
The Thermal Memory of Reionization History
The recent measurement by WMAP of a large electron scattering optical depth
tau_e = 0.17 +- 0.04 is consistent with a simple model of reionization in which
the intergalactic medium (IGM) is ionized at redshift z ~ 15, and remains
highly ionized thereafter. Here, we show that existing measurements of the IGM
temperature from the Lyman-alpha forest at z ~ 2 - 4 rule out this ``vanilla''
model. Under reasonable assumptions about the ionizing spectrum, as long as the
universe is reionized before z = 10, and remains highly ionized thereafter, the
IGM reaches an asymptotic thermal state which is too cold compared to
observations. To simultaneously satisfy the CMB and forest constraints, the
reionization history must be complex: reionization begins early at z >~ 15, but
there must have been significant (order unity) changes in fractions of neutral
hydrogen and/or helium at 6 < z < 10, and/or singly ionized helium at 4 < z <
10. We describe a physically motivated reionization model that satisfies all
current observations. We also explore the impact of a stochastic reionization
history and show that a late epoch of (HeII --> HeIII) reionization induces a
significant scatter in the IGM temperature, but the scatter diminishes with
time quickly. Finally, we provide an analytic formula for the thermal
asymptote, and discuss possible additional heating mechanisms that might evade
our constraints.Comment: 10 pages, submitted to ApJ, new references, additional discussion on
earlier work and partial HeII reionizatio
Superfluidity in Three-species Mixture of Fermi Gases across Feshbach Resonances
In this letter a generalization of the BEC-BCS crossover theory to a
multicomponent superfluid is presented by studying a three-species mixture of
Fermi gas across two Feshbach resonances. At the BEC side of resonances, two
kinds of molecules are stable which gives rise to a two-component Bose
condensate. This two-component superfluid state can be experimentally
identified from the radio-frequency spectroscopy, density profile and short
noise measurements. As approaching the BCS side of resonances, the
superfluidity will break down at some point and yield a first-order quantum
phase transition to normal state, due to the mismatch of three Fermi surfaces.
Phase separation instability will occur around the critical regime.Comment: 4 pages, 3 figures, revised versio
Radio Variability of Sagittarius A* - A 106 Day Cycle
We report the presence of a 106-day cycle in the radio variability of Sgr A*
based on an analysis of data observed with the Very Large Array (VLA) over the
past 20 years. The pulsed signal is most clearly seen at 1.3 cm with a ratio of
cycle frequency to frequency width f/Delta_f= 2.2+/-0.3. The periodic signal is
also clearly observed at 2 cm. At 3.6 cm the detection of a periodic signal is
marginal. No significant periodicity is detected at both 6 and 20 cm. Since the
sampling function is irregular we performed a number of tests to insure that
the observed periodicity is not the result of noise. Similar results were found
for a maximum entropy method and periodogram with CLEAN method. The probability
of false detection for several different noise distributions is less than 5%
based on Monte Carlo tests. The radio properties of the pulsed component at 1.3
cm are spectral index alpha ~ 1.0+/- 0.1 (for S nu^alpha), amplitude Delta
S=0.42 +/- 0.04 Jy and characteristic time scale Delta t_FWHM ~ 25 +/- 5 days.
The lack of VLBI detection of a secondary component suggests that the
variability occurs within Sgr A* on a scale of ~5 AU, suggesting an instability
of the accretion disk.Comment: 14 Pages, 3 figures. ApJ Lett 2000 accepte
Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift
This paper establishes the global asymptotic equivalence between a Poisson
process with variable intensity and white noise with drift under sharp
smoothness conditions on the unknown function. This equivalence is also
extended to density estimation models by Poissonization. The asymptotic
equivalences are established by constructing explicit equivalence mappings. The
impact of such asymptotic equivalence results is that an investigation in one
of these nonparametric models automatically yields asymptotically analogous
results in the other models.Comment: Published at http://dx.doi.org/10.1214/009053604000000012 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Position-dependent diffusion of light in disordered waveguides
Diffusion has been widely used to describe a random walk of particles or
waves, and it requires only one parameter -- the diffusion constant. For waves,
however, diffusion is an approximation that disregards the possibility of
interference. Anderson localization, which manifests itself through a vanishing
diffusion coefficient in an infinite system, originates from constructive
interference of waves traveling in loop trajectories -- pairs of time-reversed
paths returning to the same point. In an open system of finite size, the return
probability through such paths is reduced, particularly near the boundary where
waves may escape. Based on this argument, the self-consistent theory of
localization and the supersymmetric field theory predict that the diffusion
coefficient varies spatially inside the system. A direct experimental
observation of this effect is a challenge because it requires monitoring wave
transport inside the system. Here, we fabricate two-dimensional photonic random
media and probe position-dependent diffusion inside the sample from the third
dimension. By varying the geometry of the system or the dissipation which also
limits the size of loop trajectories, we are able to control the
renormalization of the diffusion coefficient. This work shows the possibility
of manipulating diffusion via the interplay of localization and dissipation.Comment: 24 pages, 6 figure
- …
