1,179 research outputs found
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions
The rise of topological phases of matter is strongly connected to their
potential to host Majorana bound states, a powerful ingredient in the search
for a robust, topologically protected, quantum information processing. In order
to produce such states, a method of choice is to induce superconductivity in
topological insulators. The engineering of the interplay between
superconductivity and the electronic properties of a topological insulator is a
challenging task and it is consequently very important to understand the
physics of simple superconducting devices such as Josephson junctions, in which
new topological properties are expected to emerge. In this article, we review
recent experiments investigating topological superconductivity in topological
insulators, using microwave excitation and detection techniques. More
precisely, we have fabricated and studied topological Josephson junctions made
of HgTe weak links in contact with two Al or Nb contacts. In such devices, we
have observed two signatures of the fractional Josephson effect, which is
expected to emerge from topologically-protected gapless Andreev bound states.
We first recall the theoretical background on topological Josephson junctions,
then move to the experimental observations. Then, we assess the topological
origin of the observed features and conclude with an outlook towards more
advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017,
published in "Topological Matter. Springer Series in Solid-State Sciences,
vol 190. Springer
Efficient and long-lived quantum memory with cold atoms inside a ring cavity
Quantum memories are regarded as one of the fundamental building blocks of
linear-optical quantum computation and long-distance quantum communication. A
long standing goal to realize scalable quantum information processing is to
build a long-lived and efficient quantum memory. There have been significant
efforts distributed towards this goal. However, either efficient but
short-lived or long-lived but inefficient quantum memories have been
demonstrated so far. Here we report a high-performance quantum memory in which
long lifetime and high retrieval efficiency meet for the first time. By placing
a ring cavity around an atomic ensemble, employing a pair of clock states,
creating a long-wavelength spin wave, and arranging the setup in the
gravitational direction, we realize a quantum memory with an intrinsic spin
wave to photon conversion efficiency of 73(2)% together with a storage lifetime
of 3.2(1) ms. This realization provides an essential tool towards scalable
linear-optical quantum information processing.Comment: 6 pages, 4 figure
Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors
Over the past several years, the inherent scaling limitations of electron
devices have fueled the exploration of high carrier mobility semiconductors as
a Si replacement to further enhance the device performance. In particular,
compound semiconductors heterogeneously integrated on Si substrates have been
actively studied, combining the high mobility of III-V semiconductors and the
well-established, low cost processing of Si technology. This integration,
however, presents significant challenges. Conventionally, heteroepitaxial
growth of complex multilayers on Si has been explored. Besides complexity, high
defect densities and junction leakage currents present limitations in the
approach. Motivated by this challenge, here we utilize an epitaxial transfer
method for the integration of ultrathin layers of single-crystalline InAs on
Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we
use the abbreviation "XOI" to represent our compound semiconductor-on-insulator
platform. Through experiments and simulation, the electrical properties of InAs
XOI transistors are explored, elucidating the critical role of quantum
confinement in the transport properties of ultrathin XOI layers. Importantly, a
high quality InAs/dielectric interface is obtained by the use of a novel
thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs
exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with
ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150
mV/decade for a channel length of ~0.5 {\mu}m
The ARIC predictive model reliably predicted risk of type II diabetes in Asian populations
10.1186/1471-2288-12-48BMC Medical Research Methodology12
Brain perfusion imaging with voxel-based analysis in secondary progressive multiple sclerosis patients with a moderate to severe stage of disease: a boon for the workforce
Background: The present study was carried out to evaluate cerebral perfusion in multiple sclerosis (MS) patients
with a moderate to severe stage of disease. Some patients underwent hyperbaric oxygen therapy (HBOT) and brain
perfusion between before and after that was compared.
Methods: We retrospectively reviewed 25 secondary progressive (SP)-MS patients from the hospital database.
Neurological disability evaluated by Expanded Disability Status Scale Score (EDSS). Brain perfusion was performed
by (99 m) Tc-labeled bicisate (ECD) brain SPECT and the data were compared using statistical parametric mapping
(SPM). In total, 16 patients underwent HBOT. Before HBOT and at the end of 20 sessions of oxygen treatment,
99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed again then
the results were evaluated and compared. Brain perfusion was performed by (99 m) Tc-labeled bicisate (ECD) brain
SPECT and the data were compared using statistical parametric mapping (SPM).
Results: A total of 25 SP-MS patients, 14 females (56 %) and 11 males (44 %) with a mean age of 38.92 ± 11.
28 years included in the study. The mean disease duration was 8.70 ± 5.30 years. Of the 25 patients, 2 (8 %) had
a normal SPECT and 23 (92 %) had abnormal brain perfusion SPECT studies. The study showed a significant
association between severity of perfusion impairment with disease duration and also with EDSS (P <0.05). There
was a significant improvement in pre- and post-treatment perfusion scans (P <0.05), but this did not demonstrate
a significant improvement in the clinical subjective and objective evaluation of patients (P >0.05).
Conclusions: This study depicted decreased cerebral perfusion in SP-MS patients with a moderate to severe
disability score and its association with clinical parameters. Because of its accessibility, rather low price, practical
ease, and being objective quantitative information, brain perfusion SPECT can be complementing to other
diagnostic modalities such as MRI and clinical examinations in disease surveillance and monitoring. The literature
on this important issue is extremely scarce, and follow up studies are required to assess these preliminary results
Too close for comfort: spatial patterns in acorn barnacle populations
Spatial patterns in aggregations form as a result of the interplay between costs and benefits experienced by individuals. Such self-organisation of aggregations can be explained using a zonal model in which a short-range zone of repulsion and longer-range zone of attraction surrounding individuals leads to emergent pattern properties. The signal of these processes can be detected using spatial pattern analyses. Furthermore, in sessile organisms, post-settlement mortality reveals the relative costs and benefits of positions within the aggregation. Acorn barnacles are known to require contact with conspecifics for reproduction and are therefore believed to aggregate for this purpose; isolated individuals may also be more susceptible to abiotic stress and predation. At short distances, however, competition for space and resources is likely to occur. In this study spatial patterns of barnacles (Semibalanus balanoides L.) were analysed using pair-correlation functions. Individuals were dispersed at distances below 0.30 cm, but peak relative density occurred at a distance of 0.36 cm from conspecifics. This is much closer than required for reproductive access, implying a strong aggregative drive, up to the point of physical contact with neighbours. Nevertheless, analysis of dead barnacles illustrated that such proximity carries a cost as barnacles with many neighbours were more likely to have died. The inferences obtained from these patterns are that barnacles aggregate as closely as they can, and that local neighbourhood competition is a powerful determinant of mortality. These processes give rise to the observed pattern properties
Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Exploring the Trypanosoma brucei Hsp83 Potential as a Target for Structure Guided Drug Design
Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp), while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF). Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC) and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite
- …
