3,851 research outputs found
Anomalous gauge couplings of the Higgs boson at the CERN LHC: Semileptonic mode in WW scatterings
We make a full tree level study of the signatures of anomalous gauge
couplings of the Higgs boson at the CERN LHC via the semileptonic decay mode in
WW scatterings. Both signals and backgrounds are studied at the hadron level
for the Higgs mass in the range 115 GeV to 200 GeV. We carefully impose
suitable kinematical cuts for suppressing the backgrounds. To the same
sensitivity as in the pure leptonic mode, our result shows that the
semileptonic mode can reduce the required integrated luminosity by a factor of
3. If the anomalous couplings in nature are actually larger than the
sensitivity bounds shown in the text, the experiment can start the test for an
integrated luminosity of 50 inverse fb.Comment: PACS numbers updated. Version published in Phys.Rev.D79,055010(2009
Visualizing the elongated vortices in -Ga nanostrips
We study the magnetic response of superconducting -Ga via low
temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex
cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large
axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips
(width 100 nm). This is in stark contrast with the isotropic circular
vortex core in a larger round-shaped Ga island. We suggest that the unusual
elongated vortices in Ga nanostrips originate from geometric confinement effect
probably via the strong repulsive interaction between the vortices and Meissner
screening currents at the sample edge. Our finding provides novel conceptual
insights into the geometrical confinement effect on magnetic vortices and forms
the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio
Recommended from our members
Sulfated tyrosines 27 and 29 in the N-terminus of human CXCR3 participate in binding native IP-10
Aim: Human CXCR3, a seven-transmembrane segment (7TMS), is predominantly expressed in Th1-mediated responses. Interferon-γ-inducible protein 10 (IP-10) is an important ligand for CXCR3. Their interaction is pivotal for leukocyte migration and activation. Tyrosine sulfation in 7TMS is a posttranslational modification that contributes substantially to ligand binding. We aimed to study the role of tyrosine sulfation of CXCR3 in the protein's binding to IP-10. Methods: Plasmids encoding CXCR3 and its mutants were prepared by PCR and site-directed mutagenesis. HEK 293T cells were transfected with plasmids encoding CXCR3 or its variants using calcium phosphate. Transfected cells were labeled with [35S]-cysteine and methionine or [35S]-Na2SO3 and then analyzed by immunoprecipitation to measure sulfation. Experiments with 125I-labeled IP-10 were carried out to evaluate the affinity of CXCR3 for its ligand. Calcium influx assays were used to measure intercellular signal transduction. Results: Our data show that sulfate moieties are added to tyrosines 27 and 29 of CXCR3. Mutation of these two tyrosines to phenylalanines substantially decreases binding of CXCR3 to IP-10 and appears to eliminate the associated signal transduction. Tyrosine sulfation of CXCR3 is enhanced by tyrosyl protein sulfotransferases (TPSTs), and it is weakened by shRNA constructs. The binding ability of CXCR3 to IP-10 is increased by TPSTs and decreased by shRNAs. Conclusions: This study identifies two sulfated tyrosines in the N-terminus of CXCR3 as part of the binding site for IP-10, and it underscores the fact that tyrosine sulfation in the N-termini of 7TMS receptors is functionally important for ligand interactions. Our study suggests a molecular target for inhibiting this ligand-receptor interaction
Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation
Arabidopsis mutants produced by constitutive overexpression of the CRISPR/Cas9 genome editing system are usually mosaics in the T1 generation. In this study, we used egg cell-specific promoters to drive the expression of Cas9 and obtained non-mosaic T1 mutants for multiple target genes with high efficiency. Comparisons of 12 combinations of eight promoters and two terminators found that the efficiency of the egg cell-specific promoter-controlled CRISPR/Cas9 system depended on the presence of a suitable terminator, and the composite promoter generated by fusing two egg cell-specific promoters resulted in much higher efficiency of mutation in the T1 generation compared with the single promoters. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0715-0) contains supplementary material, which is available to authorized users
Polyketides from the Halotolerant Fungus Myrothecium sp. GS-17
Two new polyketides, myrothecol (1) and 5-hydroxy-3-methyl-4-(1- hydroxylethyl)-furan-2(5H)-one (2), were isolated from the fermentation broth of the halotolerant fungus Myrothecium sp. GS-17 along with three known compounds, 5-hydroxyl-3-[(1S)-1-hydroxyethyl]-4-methylfuran-2(5H)-one (3), 3,5-dimethyl-4- hydroxylmethyl-5-methoxyfuran-2(5H)-one (4), and 3,5-dimethyl-4-hydroxymethyl-5- hydroxyfuran-2(5H)-one (5). Compound 1 is the first natural occurring polyketide with a unique furylisobenzofuran skeleton. The structures of these compounds were established via extensive spectroscopic analyses including 1D-, 2D-NMR, HRESI-MS, and crystal X-ray diffraction analysis
- …
