3,391 research outputs found

    Theoretical Study on Rotational Bands and Shape Coexistence of 183,185,187^{183,185,187}{Tl} in the Particle Triaxial-Rotor Model

    Get PDF
    By taking the particle triaxial-rotor model with variable moment of inertia, we investigate the energy spectra, the deformations and the single particle configurations of the nuclei 183,185,187^{183,185,187}Tl systemically. The calculated energy spectra agree with experimental data quite well. The obtained results indicate that the aligned bands observed in 183,185,187^{183,185,187}Tl originate from the [530]1/2[530]{{1/2}}^{-}, [532]3/2[532]{{3/2}}^{-}, [660]1/2+[660]{{1/2}}^{+} proton configuration coupled to a prolate deformed core, respectively. Whereas, the negative parity bands built upon the 9/2{{9/2}}^{-} isomeric states in 183,185,187^{183,185,187}Tl are formed by a proton with the [505]9/2[505]{{9/2}}^{-} configuration coupled to a core with triaxial oblate deformation, and the positive parity band on the 13/2+{{13/2}}^{+} isomeric state in 187^{187}Tl is generated by a proton with configuration [606]13/2+[606]{{13/2}}^{+} coupled to a triaxial oblate core.Comment: 16 pages, 5 figures. To appear in Physical Review

    Data Processing Pipeline for Pointing Observations of Lunar-based Ultraviolet Telescope

    Get PDF
    We describe the data processing pipeline developed to reduce the pointing observation data of Lunar-based Ultraviolet Telescope (LUT), which belongs to the Chang'e-3 mission of the Chinese Lunar Exploration Program. The pointing observation program of LUT is dedicated to monitor variable objects in a near-ultraviolet (245-345 nm) band. LUT works in lunar daytime for sufficient power supply, so some special data processing strategies have been developed for the pipeline. The procedures of the pipeline include stray light removing, astrometry, flat fielding employing superflat technique, source extraction and cosmic rays rejection, aperture and PSF photometry, aperture correction, and catalogues archiving, etc. It has been intensively tested and works smoothly with observation data. The photometric accuracy is typically ~0.02 mag for LUT 10 mag stars (30 s exposure), with errors come from background noises, residuals of stray light removing, and flat fielding related errors. The accuracy degrades to be ~0.2 mag for stars of 13.5 mag which is the 5{\sigma} detection limit of LUT.Comment: 10 pages, 7 figures, 4 tables. Minor changes and some expounding words added. Version accepted for publication in Astrophysics and Space Science (Ap&SS

    Azimuthal distributions of radial momentum and velocity in relativistic heavy ion collisions

    Full text link
    Azimuthal distributions of radial (transverse) momentum, mean radial momentum, and mean radial velocity of final state particles are suggested for relativistic heavy ion collisions. Using transport model AMPT with string melting, these distributions for Au + Au collisions at 200 GeV are presented and studied. It is demonstrated that the distribution of total radial momentum is more sensitive to the anisotropic expansion, as the anisotropies of final state particles and their associated transverse momentums are both counted in the measure. The mean radial velocity distribution is compared with the radial {\deg}ow velocity. The thermal motion contributes an isotropic constant to mean radial velocity

    Soliton with a Pion Field in the Global Color Symmetry Model

    Full text link
    We calculate the property of the global color symmetry model soliton with the pion field being included explicitly. The calculated results indicate that the pion field provides a strong attraction so that the eigen-energy of a quark and the mass of a soliton reduce drastically, in contrast to those with only the sigma field.Comment: 15 pages, 2 figure

    Synthesis of antisymmetric spin exchange interaction and entanglement generation with chiral spin states in a superconducting circuit

    Full text link
    We have synthesized the anti-symmetric spin exchange interaction (ASI), which is also called the Dzyaloshinskii-Moriya interaction, in a superconducting circuit containing five superconducting qubits connected to a bus resonator, by periodically modulating the transition frequencies of the qubits with different modulation phases. This allows us to show the chiral spin dynamics in three-, four- and five-spin clusters. We also demonstrate a three-spin chiral logic gate and entangle up to five qubits in Greenberger-Horne-Zeilinger states. Our results pave the way for quantum simulation of magnetism with ASI and quantum computation with chiral spin states.Comment: 22 pages, 7 figures, 1 tabl

    Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals

    Get PDF
    peer-reviewedFoods are good sources of vitamins, minerals and dietary fibers as well as phytochemicals, which are beneficial for the human body as nutritional supplements. The nutritional value (crude fibers, crude proteins, crude fats, flavonols, carotenoids, polyphenols, glucosinolate, chlorophyll, and ascorbic acid) and biological or functional properties (antioxidant activity, anticancer activity, or anti-mutagenic activity) of foods can be well retained and protected with the appropriate cooking methods. The chemical, physical and enzyme modifications that occur during cooking will alter the dietary phytochemical antioxidant capacity and digestibility. This paper reviewed the recent advances on the effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Furthermore, the possible mechanisms underlying these changes were discussed, and additional implications and future research goals were suggested. The domestic cooking process for improving the palatability of foods and increasing the bioavailability of nutrients and bioactive phytochemicals has been well supported
    corecore