62 research outputs found

    Euchlorocystis gen. nov and Densicystis gen. nov., Two New Genera of Oocystaceae Algae from High-altitude Semi-saline Habitat (Trebouxiophyceae, Chlorophyta)

    Get PDF
    The Oocystaceae family is generally considered to contain common freshwater eukaryotic microalgae, and few are reported living in semi-saline habitats. Our latest ecological survey in Qinghai Lake and Angzicuo Lake, both large, closed, high-altitude, semi-saline lakes located on the Qinghai-Tibet plateau in China, revealed Oocystaceae species as a dominant group among plankton. Since limited knowledge exists about semi-saline species in the Oocystaceae family, a taxonomical study was carried out using morphological and phylogenetic methods. Using this approach, four new strains of Oocystaceae were identified and successfully cultured in the lab. Molecular results correlated with morphological characters and resolved these species into at least three genera. A new genus, Euchlorocystis, with type species Euchlorocystis subsalina, is described here as having the distinctive morphology of multiple pyrenoids per chloroplast among Oocystaceae, and an independent phylogenetic position at the base of the Oocystaceae. Similarly, the genus Densicystis, with type species Densicystis glomerata, is newly proposed here as having a unique colony morphology of dozens or hundreds of little cells tightly embedded in ellipsoid to round mucilage masses. Oocystis marina, originally described from the Baltic Sea, was also identified in Qinghai Lake and Angzicuo Lake and phylogenetically positioned in the semi-saline clade of the Oocystaceae. The result that a marine species was detected in the closed inland lakes implies a further need to reevaluate the origins of these species.</p

    Genetic Diversity and Geographical Distribution of the Red Tide Species <i>Coscinodiscus granii</i> Revealed Using a High-Resolution Molecular Marker

    No full text
    Diatoms are responsible for approximately 40% of the global primary photosynthetic production and account for up to 20% of global carbon fixation. Coscinodiscus granii is a red tide forming species of the phylum Bacillariophyta that has been detected in a wide range of coastal regions, suggesting the possibility of the existence of high genetic diversity with differential adaptation. Common molecular markers including 18S rDNA, 16S rDNA, ITS, cox1, and rbcL do not provide sufficient resolution for distinguishing intra-species genetic diversity, hindering in-depth research on intra-species genetic diversity and their spatial and temporal dynamics. In this project, we aimed to develop molecular markers with high resolution and specificity for C. granii, attempting to identify different taxa of this species, which will set up a stage for subsequent functional assays. Comparative genomics analysis of the mtDNAs of C. granii strains identified a genomic region with high genomic variations, which was used to guide the development of a molecular marker with high resolution and high specificity. This new molecular marker, which was named cgmt1 (C. granii mitochondrial 1), was 376 bp in size and differentiated C. granii samples collected in coastal regions of China into three different clades. Preliminary analysis of field samples collected in various coastal regions in China revealed that C. granii clades were almost exclusively found in the Bohai Sea and the north Yellow Sea. This newly developed molecular marker cgmt1 could be used for tracking intra-species genetic diversity and biogeographic distribution of C. granii in different ecosystems

    Synergistic Modulation of Sn-Based Perovskite Solar Cells with Crystallization and Interface Engineering

    No full text
    A high-quality Sn-based perovskite absorption layer and effective carrier transport are the basis for high-performance Sn-based perovskite solar cells. The suppression of Sn2+ oxidation and rapid crystallization is the key to obtaining high-quality Sn-based perovskite film. And interface engineering is an effective strategy to enhance carrier extraction and transport. In this work, tin fluoride (SnF2) was introduced to the perovskite precursor solution, which can effectively modulate the crystallization and morphology of Sn-based perovskite layer. Furthermore, the hole-transporting layer of PEDOT:PSS was modified with CsI to enhance the hole extraction and transport. As a result, the fabricated inverted Sn-based perovskite solar cells demonstrated a power conversion efficiency of 7.53% with enhanced stability

    Large Differences in the Haptophyte Phaeocystis globosa Mitochondrial Genomes Driven by Repeat Amplifications

    No full text
    The haptophyte Phaeocystis globosa is a well-known species for its pivotal role in global carbon and sulfur cycles and for its capability of forming harmful algal blooms (HABs) with serious ecological consequences. Its mitochondrial genome (mtDNA) sequence has been reported in 2014 but it remains incomplete due to its long repeat sequences. In this study, we constructed the first full-length mtDNA of P. globosa, which was a circular genome with a size of 43,585 bp by applying the PacBio single molecular sequencing method. The mtDNA of this P. globosa strain (CNS00066), which was isolated from the Beibu Gulf, China, encoded 19 protein-coding genes (PCGs), 25 tRNA genes, and two rRNA genes. It contained two large repeat regions of 6.7 kb and ∼14.0 kb in length, respectively. The combined length of these two repeat regions, which were missing from the previous mtDNA assembly, accounted for almost half of the entire mtDNA and represented the longest repeat region among all sequenced haptophyte mtDNAs. In this study, we tested the hypothesis that repeat unit amplification is a driving force for different mtDNA sizes. Comparative analysis of mtDNAs of five additional P. globosa strains (four strains obtained in this study, and one strain previously published) revealed that all six mtDNAs shared identical numbers of genes but with dramatically different repeat regions. A homologous repeat unit was identified but with hugely different numbers of copies in all P. globosa strains. Thus, repeat amplification may represent an important driving force of mtDNA evolution in P. globosa.</jats:p

    Complete mitochondrial genome of Coscinodiscus granii (Coscinodiscophyceae, Bacillariophyta)

    No full text
    Coscinodiscus is a genus common in marine phytoplankton, with some species thought to have a significant negative ecological impact. However, the availability of their genome sequences is rather limited. Here, we assembled and annotated the first complete mitochondrial genome (mtDNA) of the species Coscinodiscus granii L.F.Gough 1905, as part of our efforts to gain a better understanding of the genetic characteristics of Coscinodiscus taxa at a genomic level. The circular mtDNA was 34,970 bp in length and encoded 60 genes, including 32 protein-coding genes (PCGs), 24 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and two conserved open reading frames (orfs). The overall GC content of C. granii mtDNA was 24.30%, which was slightly lower than that of C. wailesii (25.00%), the first species in the genus Coscinodiscus whose mtDNA has been reported, and higher than that of Melosira undulata (21.60%), the first species in the class Coscinodiscophyceae whose mtDNA has been reported. As expected for congeneric species, phylogenetic analysis using concatenated amino acid sequences of 27 shared PCGs suggested that C. granii has a closer evolutionary relationship with C. wailesii. Coscinodiscus was found to be monophyletic in the phylogeny. The complete mtDNAs of more Coscinodiscus species will facilitate the exploration of the evolutionary relationships of species in the Class Coscinodiscophyceae
    corecore